作为一位优秀的人民教师,都需要提前准备教案,可以有效提升自己的教学能力,那么优秀的教案是什么样的呢?以下是小编为大家整理的10篇2022最热小学六年级数学教案,大家一起来看看吧。
2022最热小学六年级数学教案1
教学目标
1、使学生理解求圆锥体积的计算公式。
2、会运用公式计算圆锥的体积。
教学重点
圆锥体体积计算公式的推导过程。
教学难点
正确理解圆锥体积计算公式。
教学步骤
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式。
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法、老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土、实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里、倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
3、学生汇报实验结果
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的。
板书:
5、推导圆锥的体积公式:用字母表示圆锥的体积公式、板书:
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是()。
圆锥的底面积是10,高是9,体积是()。
(二)教学例1
1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
学生独立计算,集体订正。
板书:
答:这个零件的体积是76立方厘米。
2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?
3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)
(1)已知圆锥的底面半径和高,求体积。
提问:你们能看着这幅图编个故事吗?
学生分小组讨论交流,形成如下的表述:
丝瓜架上原来有8根丝瓜,弟弟第一次摘下3根,第二次又摘下1根,还剩几根?
讨论怎样列式,怎样计算,根据学生的回答板书算式,并让学生把书上的算式填写完整。
引导学生小结:8—3—1=4连续减了两次,我们把它叫做连减。
3、师生共同小结:今天我们学了什么新的内容?在计算的时候应先算什么,再算什么呢?
三、巩固深化,应用拓展
修改补充栏:
1、想想做做第1题。让学生在幻灯机前演示连加、连减的计算过程。
2、想想做做第2题。让学生仔细观察图意,表述图意,再填写算式。
3、想想做做第3题。学生列出的算式可以不同,可以是9—2—4=3,表示9只鸭子游走2只,再游走4只,还剩3只;也可以是9—2—3=4
表示河里有9只鸭子,先上岸2只,又上岸3只,河里会议4只。
4、想想做做第4题。让学生做在课堂作业本上。
四、总结评价,点拨学法
今天我们学到哪些知识?回家后出题给爸爸、妈妈做,好吗?
2022最热小学六年级数学教案3
教学目标
1、使学生理解按比例分配的意义。
2、掌握按比例分配应用题的特征及解题方法。
3、培养学生应用所学知识解决实际问题的能力。
教学重点
掌握按比例分配应用题的特征及解题方法。
教学难点
按比例分配应用题的实际应用。
教学过程
一、复习引入
(一)填空
已知六年级1班男生人数和女生人数的比是3∶2。
1、男生人数是女生人数的()。
2、女生人数是男生人数的(),女生人数和男生人数的比是()。
3、男生人数占全班人数的(),男生人数和全班人数的比是()。
4、全班人数是男生人数的(),全班人数和男生人数的比是()。
5、女生人数占全班人数的(),女生人数和全班人数的比是()。
6、全班人数是女生人数的(),全班人数和女生人数的比是()。
(二)口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
1、学生口答:1002=50(平方米)。
2、教师提问
这是一道分配问题,分谁?(100平方米)怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?
作为一位优秀的人民教师,都需要提前准备教案,可以有效提升自己的教学能力,那么优秀的教案是什么样的呢?以下是小编为大家整理的10篇2022最热小学六年级数学教案,大家一起来看看吧。
2022最热小学六年级数学教案1
教学目标
1、使学生理解求圆锥体积的计算公式。
2、会运用公式计算圆锥的体积。
教学重点
圆锥体体积计算公式的推导过程。
教学难点
正确理解圆锥体积计算公式。
教学步骤
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式。
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法、老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土、实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里、倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
3、学生汇报实验结果
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的。
板书:
5、推导圆锥的体积公式:用字母表示圆锥的体积公式、板书:
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是()。
圆锥的底面积是10,高是9,体积是()。
(二)教学例1
1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
学生独立计算,集体订正。
板书:
答:这个零件的体积是76立方厘米。
2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?
3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)
(1)已知圆锥的底面半径和高,求体积。