六年级到了,是该好好准备小学阶段的复习工作了,以下是小编精心为大家收集整理的小学六年级数学知识点总结大全精选5篇,希望对大家有所帮助,欢迎阅读分享。

小学六年级数学知识点总结大全精选1

一、数的认识

整数【正数、0、负数】

1、一个物体也没有,用0表示。0和1、2、3……都是自然数,也都是整数

2、最小的自然数是0,自然数的个数是无限的,没有最大的自然数。

3、0既不是正数,也不是负数。正数都大于0,负数都小于0。

4、整数包括正整数、0和负整数。如:-3、-17、0、90、6等。

5、整数的读写:多位数从个位起,每四位分为一级,可分为个级、万级、亿级。读数时,从最高位读起,一级一级地读。读万级和亿级的数时要按个级的读法来读,,并在后面加上级名。每一级末尾的0都不读,其他数位上无论有一个0或连续有几个0,都只读一个“零”。

6、整数的写法:写数时,先确定最高位是哪一级的哪个数位,然后从高位起,一级一级往下写,哪一位上一个也没有就在那一位上写0。

7、整数的数位从低位开始分别是个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位、十亿位、百亿位、千亿位……

整数的计数单位分别是一(个)、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿……

8、大数目的改写:把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

在不改变原数大小的前提下,按要求改写数,写出的数是原数的准确数,根据需要还可以还原。例如:974800000=9.748亿,453200=45.32万。

9、求一个数的近似值(通常采用四舍五入法):把一个数保留整数、保留一位小数、保留两位小数、保留三位小数……也可以分别说成精确到个位、精确到十分位、精确到百分位、精确到千分位……例如把8745603先改写成用“万”作单位的数,再省略“万”后面的尾数(精确到万位)8745603=874.5603万≈875万。

10、整数的大小比较:如果位数不同,位数多的数就大;如果位数相同,先看最高位,最高位上的数大的那个数就大,最高位相同,次高位上的数大的哪个数就大,如果还相同,则继续比较,以此类推,直到比较出大小为止。

小数【有限小数、无限小数】

1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。

3、小数点向右移动一位、两位、三位……原来的数分别扩大10倍、100倍、1000倍……

小数点向左移动一位、两位、三位……原来的数分别缩小10倍、100倍、1000倍……

4、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。

5、小数的读法:读小数时,整数部分仍按照整数的读法来读,整数部分是“0”的读作“零”,小数点读作“点”,小数部分按从左往右的顺序读出每个数位上的数字,小数部分的0要读。

6、小数的写法:写小数时,整数部分按照整数的写法去写,整数部分是0的写作“0”,小数点写在整数部分的右下角,小数部分顺次写出每一个数位上的数字。

7、小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

8、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

9、比较小数大小的方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

10、求小数近似数的一般方法:

(1)先要弄清保留几位小数;

(2)根据需要确定看哪一位上的数;

(3)用“四舍五入”的方法求得结果。

分数【真分数、假分数】

1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。

3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。

4、分数可以分为真分数和假分数。

5、分子小于分母的分数叫做真分数。真分数小于1。

6、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。分子是分母倍数的假分数实际上是整数。

7、分子和分母只有公因数1的分数叫做最简分数。

8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

9、应用分数的基本性质,可以通分和约分。

1、计算整数加、减法要把相同数位对齐,从低位算起。

2、计算小数加、减法要把小数点对齐,从低位算起。

3、小数乘法:

(1)先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(2)注意:在积里点小数点时,位数不够的,要在前面用0补足。

4、小数除法:

(1)商的小数点要和被除数的小数点对齐;

(2)有余数时,要在后面添0,继续往下除;

(3)个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。

(4)把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。

(5)当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。

5、分数加、减法:

(1)同分母分数相加减,把分子相加减,分母不变。

(2)异分母分数相加减,要先通分化成同分母分数,然后再相加减。

三、四则混合运算的顺序

同级运算:在一个只有加减或乘除的算式里,按照从左到右的顺序进行计算。

二级运算:在一个既有加减又有乘除的算式中,按照先乘除后加减的顺序进行计算。

在有括号的算式中,先算小括号里的,再算中括号里的,最后算大括号里的。

四、运算法则

加减法的法则:计算整数加减法把相同数位对齐,计算小数加减法要把小数点对齐,计算分数加减法要先通分化成同分母分数,其实质都是要把相同计算单位的数相加减。

乘除法的法则:小数乘除法通常转化成整数乘除法进行计算,然后考虑积或商的小数点定位;分数除法通常转化成分数乘法进行计算。

五、运算定律和性质

加法交换律:A+B=B+A

加法结合律:(A+B)+C=A+(B+C)

乘法交换律:A×B=B×A

乘法结合律:A×B×C=A×(B×C)

乘法分配律:(A+B)×C=A×C+B×C

减法性质:A-B-C=A-(B+C)

除法性质:A÷B÷C=A÷(B×C)

A×C-B×C=(A-B)×C

(A+B)÷C=A÷C+B÷C

六、探索运算规律

计算的过程,不仅仅是运用计算法则机械演算的过程,也是观察分析、不断探索和总结各种运算规律的过程。一般,探索运算规律分成这几个阶段:

计算给定的题组或试算简单的几道题→观察算式和计算结果有何特点→比较找出不同算式的共同之处,形成规律的猜测→自主举例进一步验证规律→周密思考中确认规律。

运算规律:

积的变化规律:一个因数不变,另一个因数乘几,得到的积等于原来的积乘几。

商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。

(商不变规律与小数的基本性质、分数的基本性质的内在关系)

七、式与方程

(一)、用字母表示数

求比值

根据比值的意义,用比的前项除以后项。

是一个数值,可以是整数,也可以是小数或分数。

化简比

根据比的基本性质,把比的前项和后项同时乘或同时除以相同的数(0除外)。

是一个最简单的整数比,即前项、后项是公因数只有1的两个数。

四、正比例和反比例

两种相关联的量,一种量变化,另一种量也随着变化。

两种量中相对应的两个数的比的比值(也就是商)一定。

y/x=k(一定)

反比例关系

两种量中相对应的两个数的积一定。

X×y=k(一定)

五、比例尺

一幅图的比例尺是指图上距离与实际距离的比。即

图上距离:实际距离=比例尺

比例尺的种类:数字比例尺和线段比例尺

六、按比例分配

把一个数量按照一定的比来进行分配,这种分配的方法叫做按比例分配。

方法:①求出每一份表示多少,再根据分配的份数求出相应的结果。

②根据两个量之间的关系,求出每一个量的结果。(乘法或除法都可)

小学六年级数学知识点总结大全精选3

一、图形的认识、测量

(一)量的计量

1、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

2、长度单位:(10)

1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1米=100厘米

3、面积单位是用来测量物体的表面或平面图形的大小的。常用的面积单位有:平方千米、公顷、平方米、平方分米、平方厘米。

4、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

5、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。

6、面积单位:(100)

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

7、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

5、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

6、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。按边分,可以分为等边三角形、等腰三角形和任意三角形。

7、三角形的内角和等于180度。

8、在一个三角形中,任意两边之和大于第三边。

9、在一个三角形中,最多只有一个直角或最多只有一个钝角。

10、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

11、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。

12、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。

13、围成一个图形的所有边长的总和就是这个图形的周长。

14、物体的表面或围成的平面图形的大小,叫做它们的面积。

15、平面图形的面积计算公式推导:

【1】平行四边形面积公式的推导过程?

(1)把平行四边形通过剪切、平移可以转化成一个长方形。

(2)长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。

(3)因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。

【2】三角形面积公式的推导过程?

(1)用两个完全一样的三角形可以拼成一个平行四边形。

(2)平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半

(3)因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。即:S=ah÷2。

【3】梯形面积公式的推导过程?

(1)用两个完全一样的梯形可以拼成一个平行四边形。

(2)平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。

(3)因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。

【4】画图说明圆面积公式的推导过程?

(1)把圆分成若干等份,剪开后,拼成了一个近似的长方形。

(2)长方形的长相当于圆周长的一半,宽相当于圆的半径。

(3)因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2。

16、平面图形的周长和面积计算公式:

长方形周长=(长+宽)×2

长方形面积=长×宽

正方形周长=边长×4

正方形面积=边长×边长

平行四边形面积=底×高

三角形面积=底×高÷2

梯形面积=(上底+下底)×高÷2

C=πd

C=2πr

r=d÷2

r=C÷2π

d=2r

温馨提示! 你需要支付 ¥1.00 元后才能查看付费内容
点赞(0)
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部