以下是小编收集整理的五年级下册数学教案合集9篇,希望能够帮助到大家。

五年级下册数学教案1

教学目标:

1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

2。学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。

教学重点:

1、两位数乘两位数的估算。

2、探索并掌握两位数乘两位数(不进位)的乘法计算。

教学难点:

掌握两位数乘两位数(不进位)的乘法并能熟练计算。

教学理念:

组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。

教学准备:

课件。

学生准备:

预习课前知识。

教学过程:

一、实践调查

课前让学生在汇景新城作实地调查,调查本小区住户情况

二、课内交流

1、让同学们根据调查所得的数学信息编一道数学应用题。

2、根据所编的题目独立列式

3、探讨和交流如何解决问题。

(1)尝试通过估算结果解决问题。

A、分组讨论不同的计算过程

B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

(2)讨论算法

三、习题巩固:

1、试一试

11×4324×1244×21

2、练一练:

第1、2题

3、第3题,学生独立思考,理解题意,再进行计算

四、综合应用:

陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

五、课堂总结:今天我们学习了什么知识?你学会了什么?

六、板书设计:

五年级下册数学教案2

【教学内容】

质数和合数(课本第14页例1及第16页练习四1~3题)。

质数和合数

一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

【教学反思】

教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案3

课题:简单的土石方计算

教学目标:

1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

教学重点:

熟练运用长方体和正方体的体积计算公式解决实际问题。

教学难点:

长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

教学过程:

一、巧设情境,激趣引思。

同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

(1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

(2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

(3)学生分组讨论,指名回答问题。

这节课我们运用体积的有关知识,解决实际生活中的问题

二、自主互动,探究新知。

课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系?让学生尝试解决问题交流计算的结果。

教师介绍“方”,让学生用方描述挖出的土。

课件出示例题及拦河坝的和示意图。

让学生观察,问:你知道了哪些信息?师帮助学生理解题意。

怎样计算拦河坝的体积?为什么这样计算?使学生知道:拦河坝的体积=底面积×高。

让学生尝试解决问题,并交流计算的方法和结果。

三、应用拓展,反思交流。

1、应用:

(1)试一试帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

(2)练一练第1、2题,帮助学生理解题中的事物和信息,再独立完成。

第3、4题,让学生先说一说,要解决问题,先要求出什么?

2、拓展:

练一练5板书设计:

简单的土石方计算2×1.6×1.5=4.8(立方米)拦河坝的体积=横截面面积×长答:要挖出4.8立方米的土。

横截面的面积:(8+3)×4÷2=22(平方米)土石体积:22×50=1100(立方米)答:修这个拦河坝一共需要土石1100立方米。

五年级下册数学教案4

教学目标:

知识与技能

师:表示什么意思?净含量:250毫升表示瓶子里水的体积是250毫升。而不是瓶子的容积是250毫升,也不是瓶子的体积是250毫升

(选1升和1立方分米来对比,为实验作铺垫)

回应:计量容积,一般用体积单位,什么时候用容积单位?计量液体的体积,用容积单位板书

练习:(1)四人小组互相说说各自收集物品的容积。

(2)老师也收集了一些物品,考考大家的眼力。出示:数学书P53第三题

3、教学容积单位与体积单位之间的换算。

师:谁知道这两个容积单位之间的进率是多少?生:1000。

师:你是怎么知道的?

生:书上写的。

师:你对这个关系不表示怀疑吗?真理总是通过实践来证明的,想验证一下,你有方法吗?

由学生做实验:1升的冰红茶、500毫升的量杯、1立方分米的容器。

师:从实验中你证实了1升=1000毫升,还得出什么结论?

生:1升=1立方分米。

如此类推:你还能推理出什么关系?

生:1毫升=1立方厘米1立方米=1000升

练习:数学书P52做一做第一题和P53第四题

第三变:计算

4、教学容积的计算

出示例5,一种小汽车的油箱,里面长5d m,宽4d m,高2d m。这个油箱可以装汽油多少升?

指一名学生读题。(突出容积的计算方法与体积计算方法相同)

(1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?(为什么要改单位?求容积)

(2)学生做完后集体订正。

第四变:运用

四、应用知识,解决问题

咳两声,讲了一节课,老师口干了,很想喝水。

师:谁知道一个正常人每天要喝多少水才合适才健康?

生:1500毫升、1000毫升……

师:你是从哪里知道的?

生:书里介绍的。

师:我们一起来看看数学书P52了解更多的课外知识。同时渗透节约用水的教育。

小组活动:

(要求组长分工要明确:不同的人负责倒水、记录、计算以及汇报,倒水要注意别溢出来,注意纪律。)

(1)将一瓶约()毫升的矿泉水倒在纸杯中,看看可以倒满几杯。

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1 L,正常人一天喝多少杯才健康?

全班分享

五、总结质疑

今天学习了容积和容积单位,你有什么收获?

六、拓展延伸,发展思维

作业:

1、到商店、超市调查标有容积单位的商品及净含量,编一道有道容积计算的题目并解答。

温馨提示! 你需要支付 ¥1.00 元后才能查看付费内容
点赞(0)
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部