下面是小编整理的小学数学相遇问题经典例题4篇,希望能帮助到大家。

小学数学相遇问题经典例题1

小学奥数趣味学习《相遇问题》

两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。

相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。

它们的基本关系式如下:

总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度

1.求路程

求两地间的距离

例1两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。甲乙两地相距多少千米?(适于五年级程度)

解:两辆汽车从同时相对开出到相遇各行4小时。一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。两车行驶路程之和,就是两地距离。

56×4=224(千米)

63×4=252(千米)

224+252=476(千米)

综合算式:

56×4+63×4

=224+252

=476(千米)

答略。

例2两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。5小时后,两列火车相距多少千米?(适于五年级程度)

解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。

480-(40+42)×5

=480-82×5

=480-410

=70(千米)

答:5小时后两列火车相距70千米。

例3两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。两车相遇时,第一列火车比第二列火车多行了20千米。求甲、乙两地间的距离。(适于五年级程度)

解:两车相遇时,两车的路程差是20千米。出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。由此可求出两车相遇的时间,进而求出甲、乙两地间的距离。

(60+55)×[20÷(60-55)]

=115×[20÷5]

=460(千米)

答略。

2.求相遇时间

例1两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出,客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。两车开了几小时以后相遇?(适于五年级程度)

解:已知两个城市之间的路程是500千米,又知客车和货车的速度,可求出两车的速度之和。用两城之间的路程除以两车的速度之和可以求出两车相遇的时间。

500÷(55+45)

=500÷100

=5(小时)

答略。

例2在一次战役中,敌我双方原来相距62.75千米。据侦察员报告,敌人已向我处前进了11千米。我军随即出发迎击,每小时前进6.5千米,敌人每小时前进5千米。我军出发几小时后与敌人相遇?(适于五年级程度)解:此题已给出总距离是62.75千米,由“敌人已向我处前进了11千米”可知实际的总距离减少到(62.75-11)千米。

32x2÷(56一48)ⅹ(56十48)=832千米

答:东西两地的路程是832千米。

例题2:

甲乙两车分别从A.B两地同时出发.相向而行,5小时相遇,相遇后两车继续前进2小时,这时甲车行了全程的88%,乙车距A地还有120千米,问A.B两地相距多少千米?

解答

5小时两车合走一个全程,据此推算7小时两车应合走1.4个全程.由题意知1.4个全程=88%全程十全程一120

相当于0.48个全程的距离为120千米。

得:全程=250千米.

例题3:

甲、乙两车分别从A、B两地相对开出,甲车每小时行的路程是乙车的1.5倍,3小时后两车相遇,这时甲车超过中点45千米,求甲、乙两车每小时各行多少千米?

优质解答

乙的速度::(45×2)÷3÷(1.5-1)

=90÷3÷0.5

=60(千米);

甲的速度:60×1.5=90(千米)

答:甲每小时行90千米,乙车每小时行60千米.

例题4:

A车和B车同时从甲、乙两地相向开出,经过5小时相遇。然后,它们又各自按原速原方向继续行驶3小时,这时A车离乙地135千米,乙车也离甲地135千米,甲乙两地相距多少千米?

回答:

两车5小时相遇之后又行驶3小时,那么这3小时两车走的路程之和就是全程的3/5。A距离乙还有135千米,B距离甲还有135千米,总共还剩下135+135=270千米这270千米就相当于全程的1一(3/5)=2/5

270÷(2/5)=675千米

列总式:(135+135)÷[1-(3/5)]=675

二次相遇问题

路程比=速度比

三倍关系:

对于同一台车,开始到第二次相遇的路程等于开始到第一次相遇的路程的三倍。

例题:甲、乙两车分别从A、B两车站同时相对开出。已知甲、乙两车速度之比是4:5。它们到达对方车站后立即返回。它们第二次相遇的地方离B站18千米。问A、B两地距离是多少?

解答:把AB分成9份。第一次相遇时,甲离A 4份,乙离B 5份。相遇后它们分别再走8份和10份第二次相遇。第二次相遇点离B点3份。

AB=18÷3x9=54千米

练习:甲、乙两车速度之比为4:3.两车同时分别从A、B两地相对开出。第二次相遇离A处20千米.求A、B两地的距离.

答案:70千米。

答:把AB等分成7份.从开始到第一次相遇时,甲走了4份,乙走了3份.

开始到笫二次相遇时,甲走了4x3=12份.说明甲走到了离A的距离为7x2一12=2份.

AB两地距离为20÷2x7=70千米

小学数学相遇问题经典例题3

行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。

数量关系:路程÷速度和=相遇时间

路程÷相遇时间=速度和

速度和×相遇时间=路程

温馨提示:

温馨提示! 你需要支付 ¥1.00 元后才能查看付费内容
点赞(0)
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部