大家好,今天小编为大家整理了一些有关于全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)的内容,希望可以对大家有帮助,欢迎各位阅读和下载。
全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()
A.1+2i B.1﹣2i C.2+i D.2﹣i
2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()
A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5}
3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()
A.1盏 B.3盏 C.5盏 D.9盏
4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()
A.90π B.63π C.42π D.36π
5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()
A.﹣15 B.﹣9 C.1 D.9
6.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()
A.12种 B.18种 C.24种 D.36种
7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()
A.乙可以知道四人的成绩 B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩
8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()
A.2 B.3 C.4 D.5
9.(5分)若双曲线C:﹣
=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()
A.2 B. C.
D.
10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()
A. B.
C.
D.
11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为()
A.﹣1 B.﹣2e﹣3 C.5e﹣3 D.1
12.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(
+
)的最小值是()
A.﹣2 B.﹣ C.﹣
D.﹣1
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX= .
14.(5分)函数f(x)=sin2x+cosx﹣
(x∈[0,
])的最大值是 .
15.(5分)等差数列{an}的前n项和为Sn,a3=3,S4=10,则 = .
16.(5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分。
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.
(1)求cosB;
(2)若a+c=6,△ABC的面积为2,求b.
18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:
(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=.
19.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.
(1)证明:直线CE∥平面PAB;
(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.
20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足
=
.
(1)求点P的轨迹方程;
(2)设点Q在直线x=﹣3上,且•
=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.
21.(12分)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
(1)求a;
(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)
22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.
(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;
(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.
[选修4-5:不等式选讲](10分)
23.已知a>0,b>0,a3+b3=2.证明:
(1)(a+b)(a5+b5)≥4;
(2)a+b≤2.
参考答案与试题解析
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()
A.1+2i B.1﹣2i C.2+i D.2﹣i
【考点】A5:复数的运算.菁优网版权所有
【专题】11:计算题.
【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.
【解答】解:=
=
=2﹣i,
故选:D.
【点评】本题考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,两个复数相除,分子和分母同时乘以分母的共轭复数.
2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()
A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5}
【考点】1E:交集及其运算.菁优网版权所有
【专题】34:方程思想;4O:定义法;5J:集合.
【分析】由交集的定义可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.
【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.
若A∩B={1},则1∈A且1∈B,
可得1﹣4+m=0,解得m=3,
即有B={x|x2﹣4x+3=0}={1,3}.
故选:C.
【点评】本题考查集合的运算,主要是交集的求法,同时考查二次方程的解法,运用定义法是解题的关键,属于基础题.
3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()
A.1盏 B.3盏 C.5盏 D.9盏
【考点】89:等比数列的前n项和.菁优网版权所有
【专题】34:方程思想;4O:定义法;54:等差数列与等比数列.
【分析】设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,利用等比数列前n项和公式列出方程,能求出结果.
【解答】解:设塔顶的a1盏灯,
由题意{an}是公比为2的等比数列,
∴S7==381,
解得a1=3.
故选:B.
【点评】本题考查等比数列的首项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()
A.90π B.63π C.42π D.36π
【考点】L!:由三视图求面积、体积.菁优网版权所有
【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.
【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.
【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,
V=π•32×10﹣•π•32×6=63π,
故选:B.
【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.
5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()
A.﹣15 B.﹣9 C.1 D.9
【考点】7C:简单线性规划.菁优网版权所有
【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.
【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可.
【解答】解:x、y满足约束条件的可行域如图:
z=2x+y 经过可行域的A时,目标函数取得最小值,
由解得A(﹣6,﹣3),
则z=2x+y 的最小值是:﹣15.
故选:A.
【点评】本题考查线性规划的简单应用,考查数形结合以及计算能力.
6.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()
A.12种 B.18种 C.24种 D.36种
【考点】D9:排列、组合及简单计数问题.菁优网版权所有
【专题】11:计算题;49:综合法;5O:排列组合.
【分析】把工作分成3组,然后安排工作方式即可.
【解答】解:4项工作分成3组,可得:=6,
安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,
可得:6×=36种.
故选:D.
【点评】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力.
7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()
A.乙可以知道四人的成绩 B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩
【考点】F4:进行简单的合情推理.菁优网版权所有
【专题】2A:探究型;35:转化思想;48:分析法;5M:推理和证明.
【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案
【解答】解:四人所知只有自己看到,老师所说及最后甲说话,
甲不知自己的成绩
→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)
→乙看到了丙的成绩,知自己的成绩
→丁看到甲、丁也为一优一良,丁知自己的成绩,
给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了
故选:D.
【点评】本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题.
8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()
A.2 B.3 C.4 D.5
【考点】EF:程序框图.菁优网版权所有
【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.
【分析】执行程序框图,依次写出每次循环得到的S,K值,当K=7时,程序终止即可得到结论.
【解答】解:执行程序框图,有S=0,K=1,a=﹣1,代入循环,
第一次满足循环,S=﹣1,a=1,K=2;
满足条件,第二次满足循环,S=1,a=﹣1,K=3;
满足条件,第三次满足循环,S=﹣2,a=1,K=4;
满足条件,第四次满足循环,S=2,a=﹣1,K=5;
满足条件,第五次满足循环,S=﹣3,a=1,K=6;
满足条件,第六次满足循环,S=3,a=﹣1,K=7;
K≤6不成立,退出循环输出S的值为3.
故选:B.
【点评】本题主要考查了程序框图和算法,属于基本知识的考查,比较基础.
9.(5分)若双曲线C:﹣
=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()
A.2 B. C.
D.
【考点】KC:双曲线的性质;KJ:圆与圆锥曲线的综合.菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.
【分析】通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.
【解答】解:双曲线C:﹣
=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,
圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,
双曲线C:﹣
=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,
可得圆心到直线的距离为:=
,
解得:,可得e2=4,即e=2.
故选:A.
【点评】本题考查双曲线的简单性质的应用,圆的方程的应用,考查计算能力.
10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()
A. B.
C.
D.
【考点】LM:异面直线及其所成的角.菁优网版权所有
【专题】31:数形结合;4O:定义法;5G:空间角.
【分析】【解法一】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.
【解法二】通过补形的办法,把原来的直三棱柱变成直四棱柱,解法更简洁.
【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,
则AB1、BC1夹角为MN和NP夹角或其补角
(因异面直线所成角为(0,]),
可知MN=AB1=
,
NP=BC1=
;
作BC中点Q,则△PQM为直角三角形;
∵PQ=1,MQ=AC,
△ABC中,由余弦定理得
AC2=AB2+BC2﹣2AB•BC•cos∠ABC
=4+1﹣2×2×1×(﹣)
=7,
∴AC=,
∴MQ=;
在△MQP中,MP==
;
在△PMN中,由余弦定理得
cos∠MNP==
=﹣
;
又异面直线所成角的范围是(0,],
∴AB1与BC1所成角的余弦值为.
【解法二】如图所示,
补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;
BC1=,BD=
=
,
C1D=,
∴+BD2=
,
∴∠DBC1=90°,
∴cos∠BC1D==
.
故选:C.
【点评】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.
11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为()
A.﹣1 B.﹣2e﹣3 C.5e﹣3 D.1
【考点】6D:利用导数研究函数的极值.菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;53:导数的综合应用.
【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.
【解答】解:函数f(x)=(x2+ax﹣1)ex﹣1,
可得f′(x)=(2x+a)ex﹣1+(x2+ax﹣1)ex﹣1,
x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,
可得:f′(﹣2)=(﹣4+a)e﹣3+(4﹣2a﹣1)e﹣3=0,即﹣4+a+(3﹣2a)=0.
解得a=﹣1.
可得f′(x)=(2x﹣1)ex﹣1+(x2﹣x﹣1)ex﹣1,
=(x2+x﹣2)ex﹣1,函数的极值点为:x=﹣2,x=1,
当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,
x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.
故选:A.
【点评】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查计算能力.
12.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(
+
)的最小值是()
A.﹣2 B.﹣ C.﹣
D.﹣1
【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有
【专题】31:数形结合;4R:转化法;5A:平面向量及应用.
【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.
【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,
则A(0,),B(﹣1,0),C(1,0),
设P(x,y),则=(﹣x,
﹣y),
=(﹣1﹣x,﹣y),
=(1﹣x,﹣y),
则•(
+
)=2x2﹣2
y+2y2=2[x2+(y﹣
)2﹣
]
∴当x=0,y=时,取得最小值2×(﹣
)=﹣
,
故选:B.
【点评】本题主要考查平面向量数量积的应用,根据条件建立坐标系,利用坐标法是解决本题的关键.
大家好,今天小编为大家整理了一些有关于全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)的内容,希望可以对大家有帮助,欢迎各位阅读和下载。
全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()
A.1+2i B.1﹣2i C.2+i D.2﹣i
2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()
A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5}
3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()
A.1盏 B.3盏 C.5盏 D.9盏
4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()
A.90π B.63π C.42π D.36π
5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()
A.﹣15 B.﹣9 C.1 D.9
6.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()
A.12种 B.18种 C.24种 D.36种
7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()
A.乙可以知道四人的成绩 B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩
8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()
A.2 B.3 C.4 D.5
9.(5分)若双曲线C:﹣
=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()
A.2 B. C.
D.
10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()
A. B.
C.
D.
11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为()
A.﹣1 B.﹣2e﹣3 C.5e﹣3 D.1
12.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(
+
)的最小值是()
A.﹣2 B.﹣ C.﹣
D.﹣1
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX= .
14.(5分)函数f(x)=sin2x+cosx﹣
(x∈[0,
])的最大值是 .
15.(5分)等差数列{an}的前n项和为Sn,a3=3,S4=10,则 = .
16.(5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分。
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.
(1)求cosB;
(2)若a+c=6,△ABC的面积为2,求b.
18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图: