大家好,今天小编为大家整理了一些有关于全国统一高考数学试卷(理科)的内容,希望可以对大家有帮助,欢迎各位阅读和下载。

全国统一高考数学试卷(理科)

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()

A.{0} B.{1} C.{1,2} D.{0,1,2}

2.(5分)(1+i)(2﹣i)=()

A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i

3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()

A. B.

C. D.

4.(5分)若sinα=,则cos2α=()

A. B. C.﹣ D.﹣

5.(5分)(x2+)5的展开式中x4的系数为()

A.10 B.20 C.40 D.80

6.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()

A.[2,6] B.[4,8] C.[,3] D.[2,3]

7.(5分)函数y=﹣x4+x2+2的图象大致为()

A. B.

C. D.

8.(5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()

A.0.7 B.0.6 C.0.4 D.0.3

9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()

A. B. C. D.

10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()

A.12 B.18 C.24 D.54

11.(5分)设F1,F2是双曲线C:=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()

A. B.2 C. D.

12.(5分)设a=log0.20.3,b=log20.3,则()

A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ= .

14.(5分)曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a= .

15.(5分)函数f(x)=cos(3x+)在[0,π]的零点个数为 .

16.(5分)已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。

17.(12分)等比数列{an}中,a1=1,a5=4a3.

(1)求{an}的通项公式;

(2)记Sn为{an}的前n项和.若Sm=63,求m.

18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:

超过m不超过m

第一种生产方式

第二种生产方式

(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附:K2=

P(K2≥k)0.0500.0100.001

k3.8416.63510.828

19.(12分)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.

(1)证明:平面AMD⊥平面BMC;

(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.

20.(12分)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).

(1)证明:k<﹣

(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.

21.(12分)已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.

(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;

(2)若x=0是f(x)的极大值点,求a.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)

22.(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.

(1)求α的取值范围;

(2)求AB中点P的轨迹的参数方程.

[选修4-5:不等式选讲](10分)

23.设函数f(x)=|2x+1|+|x﹣1|.

(1)画出y=f(x)的图象;

(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.

参考答案与试题解析

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()

A.{0} B.{1} C.{1,2} D.{0,1,2}

【考点】1E:交集及其运算.菁优网版权所有

【专题】37:集合思想;4A:数学模型法;5J:集合.

【分析】求解不等式化简集合A,再由交集的运算性质得答案.

【解答】解:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},

∴A∩B={x|x≥1}∩{0,1,2}={1,2}.

故选:C.

【点评】本题考查了交集及其运算,是基础题.

2.(5分)(1+i)(2﹣i)=()

A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i

【考点】A5:复数的运算.菁优网版权所有

【专题】38:对应思想;4A:数学模型法;5N:数系的扩充和复数.

【分析】直接利用复数代数形式的乘除运算化简得答案.

【解答】解:(1+i)(2﹣i)=3+i.

故选:D.

【点评】本题考查了复数代数形式的乘除运算,是基础题.

3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()

A. B.

C. D.

【考点】L7:简单空间图形的三视图.菁优网版权所有

【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.

【分析】直接利用空间几何体的三视图的画法,判断选项的正误即可.

【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.

故选:A.

【点评】本题看出简单几何体的三视图的画法,是基本知识的考查.

4.(5分)若sinα=,则cos2α=()

A. B. C.﹣ D.﹣

【考点】GS:二倍角的三角函数.菁优网版权所有

【专题】11:计算题;34:方程思想;4O:定义法;56:三角函数的求值.

【分析】cos2α=1﹣2sin2α,由此能求出结果.

【解答】解:∵sinα=

∴cos2α=1﹣2sin2α=1﹣2×=

故选:B.

【点评】本题考查二倍角的余弦值的求法,考查二倍角公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

5.(5分)(x2+)5的展开式中x4的系数为()

A.10 B.20 C.40 D.80

【考点】DA:二项式定理.菁优网版权所有

【专题】11:计算题;34:方程思想;4O:定义法;5P:二项式定理.

【分析】由二项式定理得(x2+)5的展开式的通项为:Tr+1=(x2)5﹣r()r=,由10﹣3r=4,解得r=2,由此能求出(x2+)5的展开式中x4的系数.

【解答】解:由二项式定理得(x2+)5的展开式的通项为:

Tr+1=(x2)5﹣r()r=

由10﹣3r=4,解得r=2,

∴(x2+)5的展开式中x4的系数为=40.

故选:C.

【点评】本题考查二项展开式中x4的系数的求法,考查二项式定理、通项公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

6.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()

A.[2,6] B.[4,8] C.[,3] D.[2,3]

【考点】J9:直线与圆的位置关系.菁优网版权所有

【专题】11:计算题;34:方程思想;49:综合法;5B:直线与圆.

【分析】求出A(﹣2,0),B(0,﹣2),|AB|=2,设P(2+),点P到直线x+y+2=0的距离:d==∈[],由此能求出△ABP面积的取值范围.

【解答】解:∵直线x+y+2=0分别与x轴,y轴交于A,B两点,

∴令x=0,得y=﹣2,令y=0,得x=﹣2,

∴A(﹣2,0),B(0,﹣2),|AB|==2

∵点P在圆(x﹣2)2+y2=2上,∴设P(2+),

∴点P到直线x+y+2=0的距离:

d==

∵sin()∈[﹣1,1],∴d=∈[],

∴△ABP面积的取值范围是:

[]=[2,6].

故选:A.

【点评】本题考查三角形面积的取值范围的求法,考查直线方程、点到直线的距离公式、圆的参数方程、三角函数关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.

7.(5分)函数y=﹣x4+x2+2的图象大致为()

A.

B.

C.

D.

【考点】3A:函数的图象与图象的变换.菁优网版权所有

【专题】38:对应思想;4R:转化法;51:函数的性质及应用.

【分析】根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可.

【解答】解:函数过定点(0,2),排除A,B.

函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),

由f′(x)>0得2x(2x2﹣1)<0,

得x<﹣或0<x<,此时函数单调递增,

由f′(x)<0得2x(2x2﹣1)>0,

得x>或﹣<x<0,此时函数单调递减,排除C,

也可以利用f(1)=﹣1+1+2=2>0,排除A,B,

故选:D.

【点评】本题主要考查函数的图象的识别和判断,利用函数过定点以及判断函数的单调性是解决本题的关键.

8.(5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()

A.0.7 B.0.6 C.0.4 D.0.3

【考点】CH:离散型随机变量的期望与方差.菁优网版权所有

【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;5I:概率与统计.

【分析】利用已知条件,转化为二项分布,利用方差转化求解即可.

【解答】解:某群体中的每位成员使用移动支付的概率都为p,看做是独立重复事件,满足X~B(10,p),

P(x=4)<P(X=6),可得,可得1﹣2p<0.即p

因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去).

故选:B.

【点评】本题考查离散型离散型随机变量的期望与方差的求法,独立重复事件的应用,考查转化思想以及计算能力.

9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()

A. B. C. D.

【考点】HR:余弦定理.菁优网版权所有

【专题】11:计算题;35:转化思想;49:综合法;58:解三角形.

【分析】推导出S△ABC==,从而sinC==cosC,由此能求出结果.

【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.

△ABC的面积为

∴S△ABC==

∴sinC==cosC,

∵0<C<π,∴C=

故选:C.

【点评】本题考查三角形内角的求法,考查余弦定理、三角形面积公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()

A.12 B.18 C.24 D.54

【考点】LF:棱柱、棱锥、棱台的体积;LG:球的体积和表面积.菁优网版权所有

【专题】11:计算题;31:数形结合;34:方程思想;35:转化思想;49:综合法;5F:空间位置关系与距离.

【分析】求出,△ABC为等边三角形的边长,画出图形,判断D的位置,然后求解即可.

【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,

球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:

O′C==,OO′==2,

则三棱锥D﹣ABC高的最大值为:6,

则三棱锥D﹣ABC体积的最大值为:=18

故选:B.

【点评】本题考查球的内接多面体,棱锥的体积的求法,考查空间想象能力以及计算能力.

11.(5分)设F1,F2是双曲线C:=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()

A. B.2 C. D.

【考点】KC:双曲线的性质.菁优网版权所有

【专题】11:计算题;38:对应思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.

【分析】先根据点到直线的距离求出|PF2|=b,再求出|OP|=a,在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|cos∠PF2O,代值化简整理可得a=c,问题得以解决.

【解答】解:双曲线C:=1(a>0.b>0)的一条渐近线方程为y=x,

∴点F2到渐近线的距离d==b,即|PF2|=b,

∴|OP|===a,cos∠PF2O=

∵|PF1|=|OP|,

∴|PF1|=a,

在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|COS∠PF2O,

∴6a2=b2+4c2﹣2×b×2c×=4c2﹣3b2=4c2﹣3(c2﹣a2),

即3a2=c2,

a=c,

∴e==

故选:C.

【点评】本题考查了双曲线的简单性质,点到直线的距离公式,余弦定理,离心率,属于中档题.

12.(5分)设a=log0.20.3,b=log20.3,则()

A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b

【考点】4M:对数值大小的比较.菁优网版权所有

【专题】33:函数思想;48:分析法;51:函数的性质及应用.

【分析】直接利用对数的运算性质化简即可得答案.

【解答】解:∵a=log0.20.3=,b=log20.3=

=

∴ab<a+b<0.

故选:B.

【点评】本题考查了对数值大小的比较,考查了对数的运算性质,是中档题.

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ=

【考点】96:平行向量(共线);9J:平面向量的坐标运算.菁优网版权所有

【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.

【分析】利用向量坐标运算法则求出=(4,2),再由向量平行的性质能求出λ的值.

【解答】解:∵向量=(1,2),=(2,﹣2),

=(4,2),

=(1,λ),∥(2+),

解得λ=

故答案为:

【点评】本题考查实数值的求法,考查向量坐标运算法则、向量平行的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

14.(5分)曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a=﹣3.

【考点】6H:利用导数研究曲线上某点切线方程.菁优网版权所有

【专题】11:计算题;34:方程思想;49:综合法;53:导数的综合应用.

【分析】球心函数的导数,利用切线的斜率列出方程求解即可.

【解答】解:曲线y=(ax+1)ex,可得y′=aex+(ax+1)ex,

曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,

可得:a+1=﹣2,解得a=﹣3.

故答案为:﹣3.

【点评】本题考查函数的导数的应用切线的斜率的求法,考查转化思想以及计算能力.

15.(5分)函数f(x)=cos(3x+)在[0,π]的零点个数为3.

【考点】51:函数的零点.菁优网版权所有

大家好,今天小编为大家整理了一些有关于全国统一高考数学试卷(理科)的内容,希望可以对大家有帮助,欢迎各位阅读和下载。

全国统一高考数学试卷(理科)

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()

A.{0} B.{1} C.{1,2} D.{0,1,2}

2.(5分)(1+i)(2﹣i)=()

A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i

3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()

A. B.

C. D.

4.(5分)若sinα=,则cos2α=()

A. B. C.﹣ D.﹣

5.(5分)(x2+)5的展开式中x4的系数为()

A.10 B.20 C.40 D.80

6.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()

A.[2,6] B.[4,8] C.[,3] D.[2,3]

7.(5分)函数y=﹣x4+x2+2的图象大致为()

A. B.

C. D.

8.(5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()

A.0.7 B.0.6 C.0.4 D.0.3

9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()

A. B. C. D.

10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()

A.12 B.18 C.24 D.54

11.(5分)设F1,F2是双曲线C:=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()

A. B.2 C. D.

12.(5分)设a=log0.20.3,b=log20.3,则()

A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ= .

14.(5分)曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a= .

15.(5分)函数f(x)=cos(3x+)在[0,π]的零点个数为 .

16.(5分)已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。

17.(12分)等比数列{an}中,a1=1,a5=4a3.

(1)求{an}的通项公式;

(2)记Sn为{an}的前n项和.若Sm=63,求m.

温馨提示! 你需要支付 ¥1.00 元后才能查看付费内容
点赞(0)
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部