今天小编为大家整理了有关于2020年全国统一高考数学试卷(理科)(新课标Ⅱ),希望可以对大家有帮助。

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合U={﹣2,﹣1,0,1,2,3},A={﹣1,0,1},B={1,2},则∁U(A∪B)=()

A.{﹣2,3} B.{﹣2,2,3)

C.{﹣2,﹣1,0,3} D.{﹣2,﹣1,0,2,3}

2.(5分)若α为第四象限角,则()

A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<0

3.(5分)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()

A.10名 B.18名 C.24名 D.32名

4.(5分)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()

A.3699块 B.3474块 C.3402块 D.3339块

5.(5分)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()

A. B. C. D.

6.(5分)数列{an}中,a1=2,am+n=aman.若ak+1+ak+2+…+ak+10=215﹣25,则k=()

A.2 B.3 C.4 D.5

7.(5分)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()

A.E B.F C.G D.H

8.(5分)设O为坐标原点,直线x=a与双曲线C:=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()

A.4 B.8 C.16 D.32

9.(5分)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()

A.是偶函数,且在(,+∞)单调递增

B.是奇函数,且在(﹣)单调递减

C.是偶函数,且在(﹣∞,﹣)单调递增

D.是奇函数,且在(﹣∞,﹣)单调递减

10.(5分)已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()

A. B. C.1 D.

11.(5分)若2x﹣2y<3﹣x﹣3﹣y,则()

A.ln(y﹣x+1)>0 B.ln(y﹣x+1)<0

C.ln|x﹣y|>0 D.ln|x﹣y|<0

12.(5分)0﹣1周期序列在通信技术中有着重要应用.若序列a1a2…an…满足ai∈{0,1}(i=1,2,…),且存在正整数m,使得ai+m=ai(i=1,2,…)成立,则称其为0﹣1周期序列,并称满足ai+m=ai(i=1,2…)的最小正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…an…,C(k)=aiai+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满足C(k)≤(k=1,2,3,4)的序列是()

A.11010… B.11011… C.10001… D.11001…

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)已知单位向量的夹角为45°,k垂直,则k= .

14.(5分)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有 种.

15.(5分)设复数z1,z2满足|z1|=|z2|=2,z1+z2=+i,则|z1﹣z2|= .

16.(5分)设有下列四个命题:

p1:两两相交且不过同一点的三条直线必在同一平面内.

p2:过空间中任意三点有且仅有一个平面.

p3:若空间两条直线不相交,则这两条直线平行.

p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.

则下述命题中所有真命题的序号是 .

①p1∧p4

②p1∧p2

③¬p2∨p3

④¬p3∨¬p4

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。

17.(12分)△ABC中,sin2A﹣sin2B﹣sin2C=sinBsinC.

(1)求A;

(2)若BC=3,求△ABC周长的最大值.

18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得xi=60,yi=1200,(xi﹣)2=80,(yi﹣)2=9000,(xi﹣)(yi﹣)=800.

(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);

(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);

(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.

附:相关系数r=≈1.414.

19.(12分)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.

(1)求C1的离心率;

(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.

20.(12分)如图,已知三棱柱ABC﹣A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.

(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;

(2)设O为△A1B1C1的中心.若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.

21.(12分)已知函数f(x)=sin2xsin2x.

(1)讨论f(x)在区间(0,π)的单调性;

(2)证明:|f(x)|≤

(3)设n∈N*,证明:sin2xsin22xsin24x…sin22nx≤

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)

22.(10分)已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2:(t为参数).

(1)将C1,C2的参数方程化为普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.

[选修4-5:不等式选讲](10分)

23.已知函数f(x)=|x﹣a2|+|x﹣2a+1|.

(1)当a=2时,求不等式f(x)≥4的解集;

(2)若f(x)≥4,求a的取值范围.

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合U={﹣2,﹣1,0,1,2,3},A={﹣1,0,1},B={1,2},则∁U(A∪B)=()

A.{﹣2,3} B.{﹣2,2,3)

C.{﹣2,﹣1,0,3} D.{﹣2,﹣1,0,2,3}

【分析】先求出A∪B,再根据补集得出结论.

【解答】解:集合U={﹣2,﹣1,0,1,2,3},A={﹣1,0,1},B={1,2},

则A∪B={﹣1,0,1,2},

则∁U(A∪B)={﹣2,3},

故选:A.

【点评】本题主要考查集合的交并补运算,属于基础题.

2.(5分)若α为第四象限角,则()

A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<0

【分析】先求出2α是第三或第四象限角或为y轴负半轴上的角,即可判断.

【解答】解:α为第四象限角,

则﹣+2kπ<α<2kπ,k∈Z,

则﹣π+4kπ<2α<4kπ,

∴2α是第三或第四象限角或为y轴负半轴上的角,

∴sin2α<0,

故选:D.

【点评】本题考查了角的符号特点,考查了转化能力,属于基础题.

3.(5分)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()

A.10名 B.18名 C.24名 D.32名

【分析】由题意可得至少需要志愿者为=18名.

【解答】解:第二天的新订单超过1600份的概率为0.05,就按1600份计算,

第二天完成积压订单及当日订单的配货的概率不小于0.95就按1200份计算,

因为公司可以完成配货1200份订单,则至少需要志愿者为=18名,

故选:B.

【点评】本题考查了等可能事件概率的实际应用,属于基础题.

4.(5分)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()

A.3699块 B.3474块 C.3402块 D.3339块

【分析】由题意可得从内到外每环之间构成等差数列,且公差d=9,a1=9,根据等差数列的性质即可求出n=9,再根据前n项和公式即可求出.

【解答】解:设每一层有n环,由题意可知从内到外每环之间构成等差数列,且公差d=9,a1=9,

由等差数列的性质可得Sn,S2n﹣Sn,S3n﹣S2n成等差数列,

且(S3n﹣S2n)﹣(S2n﹣Sn)=n2d,

则n2d=729,

则n=9,

则三层共有扇面形石板S3n=S27=27×9+×9=3402块,

故选:C.

【点评】本题考查了等差数列在实际生活中的应用,考查了分析问题解决问题的能力,属于中档题.

5.(5分)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()

A. B. C. D.

【分析】由已知设圆方程为(x﹣a)2+(y﹣a)2=a2,(2,1)代入,能求出圆的方程,再代入点到直线的距离公式即可.

【解答】解:由题意可得所求的圆在第一象限,设圆心为(a,a),则半径为a,a>0.

故圆的方程为(x﹣a)2+(y﹣a)2=a2,再把点(2,1)代入,求得a=5或1,

故要求的圆的方程为(x﹣5)2+(y﹣5)2=25或(x﹣1)2+(y﹣1)2=1.

故所求圆的圆心为(5,5)或(1,1);

故圆心到直线2x﹣y﹣3=0的距离d=或d=

故选:B.

【点评】本题主要考查用待定系数法求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于基础题.

6.(5分)数列{an}中,a1=2,am+n=aman.若ak+1+ak+2+…+ak+10=215﹣25,则k=()

A.2 B.3 C.4 D.5

【分析】在已知数列递推式中,取m=1,可得,则数列{an}是以2为首项,以2为公比的等比数列,再由等比数列的前n项和公式列式求解.

【解答】解:由a1=2,且am+n=aman,

取m=1,得an+1=a1an=2an,

则数列{an}是以2为首项,以2为公比的等比数列,

∴ak+1+ak+2+…+ak+10==215﹣25,

∴k+1=5,即k=4.

故选:C.

【点评】本题考查数列递推式,考查等比关系的确定,训练了等比数列前n项和的求法,是中档题.

7.(5分)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()

A.E B.F C.G D.H

【分析】首先把三视图转换为直观图,进一步求出图形中的对应点.

【解答】解:根据几何体的三视图转换为直观图:

根据三视图和几何体的的对应关系的应用,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,

所以在侧视图中与点E对应.

故选:A.

【点评】本题考查的知识要点:三视图和几何体的直观图之间的转换、主要考查学生的运算能力和转换能力及思维能力,属于基础题型.

8.(5分)设O为坐标原点,直线x=a与双曲线C:=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()

A.4 B.8 C.16 D.32

【分析】根据双曲线的渐近线方程求出点D,E的坐标,根据面积求出ab=8,再根据基本不等式即可求解.

【解答】解:由题意可得双曲线的渐近线方程为y=±x,

分别将x=a,代入可得y=±b,

即D(a,b),E(a,﹣b),

则S△ODE=a×2b=ab=8,

∴c2=a2+b2≥2ab=16,当且仅当a=b=2时取等号,

∴C的焦距的最小值为2×4=8,

故选:B.

【点评】本题考查了双曲线的方程和基本不等式,以及渐近线方程,属于基础题.

9.(5分)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()

A.是偶函数,且在(,+∞)单调递增

B.是奇函数,且在(﹣)单调递减

C.是偶函数,且在(﹣∞,﹣)单调递增

D.是奇函数,且在(﹣∞,﹣)单调递减

【分析】求出x的取值范围,由定义判断为奇函数,利用对数的运算性质变形,再判断内层函数t=||的单调性,由复合函数的单调性得答案.

【解答】解:由,得x

又f(﹣x)=ln|﹣2x+1|﹣ln|﹣2x﹣1|=﹣(ln|2x+1|﹣ln|2x﹣1|)=﹣f(x),

∴f(x)为奇函数;

由f(x)=ln|2x+1|﹣ln|2x﹣1|=

可得内层函数t=||的图象如图,

在(﹣∞,)上单调递减,在()上单调递增,

则(,+∞)上单调递减.

又对数式y=lnt是定义域内的增函数,

由复合函数的单调性可得,f(x)在(﹣∞,﹣)上单调递减.

故选:D.

【点评】本题考查函数的奇偶性与单调性的综合,考查复合函数单调性的求法,是中档题.

10.(5分)已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()

A. B. C.1 D.

【分析】画出图形,利用已知条件求三角形ABC的外接圆的半径,然后求解OO1即可.

【解答】解:由题意可知图形如图:△ABC是面积为的等边三角形,可得

∴AB=BC=AC=3,

可得:AO1=

球O的表面积为16π,

外接球的半径为:4πR2=16,解得R=2,

所以O到平面ABC的距离为:=1.

故选:C.

【点评】本题考查球的内接体问题,求解球的半径,以及三角形的外接圆的半径是解题的关键.

11.(5分)若2x﹣2y<3﹣x﹣3﹣y,则()

A.ln(y﹣x+1)>0 B.ln(y﹣x+1)<0

C.ln|x﹣y|>0 D.ln|x﹣y|<0

【分析】由2x﹣2y<3﹣x﹣3﹣y,可得2x﹣3﹣x<2y﹣3﹣y,令f(x)=2x﹣3﹣x,则f(x)在R上单调递增,且f(x)<f(y),结合函数的单调性可得x,y的大小关系,结合选项即可判断.

【解答】解:由2x﹣2y<3﹣x﹣3﹣y,可得2x﹣3﹣x<2y﹣3﹣y,

令f(x)=2x﹣3﹣x,则f(x)在R上单调递增,且f(x)<f(y),

所以x<y,即y﹣x>0,

由于y﹣x+1>1,故ln(y﹣x+1)>ln1=0,

故选:A.

今天小编为大家整理了有关于2020年全国统一高考数学试卷(理科)(新课标Ⅱ),希望可以对大家有帮助。

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合U={﹣2,﹣1,0,1,2,3},A={﹣1,0,1},B={1,2},则∁U(A∪B)=()

A.{﹣2,3} B.{﹣2,2,3)

C.{﹣2,﹣1,0,3} D.{﹣2,﹣1,0,2,3}

2.(5分)若α为第四象限角,则()

A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<0

3.(5分)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()

A.10名 B.18名 C.24名 D.32名

4.(5分)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()

A.3699块 B.3474块 C.3402块 D.3339块

5.(5分)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()

A. B. C. D.

6.(5分)数列{an}中,a1=2,am+n=aman.若ak+1+ak+2+…+ak+10=215﹣25,则k=()

A.2 B.3 C.4 D.5

7.(5分)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()

A.E B.F C.G D.H

8.(5分)设O为坐标原点,直线x=a与双曲线C:=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()

A.4 B.8 C.16 D.32

9.(5分)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()

A.是偶函数,且在(,+∞)单调递增

B.是奇函数,且在(﹣)单调递减

C.是偶函数,且在(﹣∞,﹣)单调递增

D.是奇函数,且在(﹣∞,﹣)单调递减

10.(5分)已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()

A. B. C.1 D.

11.(5分)若2x﹣2y<3﹣x﹣3﹣y,则()

A.ln(y﹣x+1)>0 B.ln(y﹣x+1)<0

C.ln|x﹣y|>0 D.ln|x﹣y|<0

12.(5分)0﹣1周期序列在通信技术中有着重要应用.若序列a1a2…an…满足ai∈{0,1}(i=1,2,…),且存在正整数m,使得ai+m=ai(i=1,2,…)成立,则称其为0﹣1周期序列,并称满足ai+m=ai(i=1,2…)的最小正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…an…,C(k)=aiai+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满足C(k)≤(k=1,2,3,4)的序列是()

A.11010… B.11011… C.10001… D.11001…

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)已知单位向量的夹角为45°,k垂直,则k= .

14.(5分)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有 种.

15.(5分)设复数z1,z2满足|z1|=|z2|=2,z1+z2=+i,则|z1﹣z2|= .

16.(5分)设有下列四个命题:

p1:两两相交且不过同一点的三条直线必在同一平面内.

温馨提示! 你需要支付 ¥1.00 元后才能查看付费内容
点赞(0)
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部