大家好,今天小编为大家整理了一些有关于全国统一高考数学试卷(理科)(大纲版)的内容,希望可以对大家有帮助,欢迎各位阅读和下载。
全国统一高考数学试卷(理科)(大纲版)
一、选择题(本大题共12小题,每小题5分)
1.(5分)设z=,则z的共轭复数为()
A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i
2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()
A.(0,4] B.[0,4) C.[﹣1,0) D.(﹣1,0]
3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()
A.a>b>c B.b>c>a C.c>b>a D.c>a>b
4.(5分)若向量、
满足:|
|=1,(
+
)⊥
,(2
+
)⊥
,则|
|=()
A.2 B. C.1 D.
5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()
A.60种 B.70种 C.75种 D.150种
6.(5分)已知椭圆C:+
=1(a>b>0)的左、右焦点为F1、F2,离心率为
,过F2的直线l交C于A、B两点,若△AF1B的周长为4
,则C的方程为()
A.+
=1 B.
+y2=1 C.
+
=1 D.
+
=1
7.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()
A.2e B.e C.2 D.1
8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()
A. B.16π C.9π D.
9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()
A. B.
C.
D.
10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()
A.6 B.5 C.4 D.3
11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()
A. B.
C.
D.
12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()
A.y=g(x) B.y=g(﹣x) C.y=﹣g(x) D.y=﹣g(﹣x)
二、填空题(本大题共4小题,每小题5分)
13.(5分)的展开式中x2y2的系数为 .(用数字作答)
14.(5分)设x、y满足约束条件,则z=x+4y的最大值为 .
15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于 .
16.(5分)若函数f(x)=cos2x+asinx在区间(,
)是减函数,则a的取值范围是 .
三、解答题
17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.
18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(Ⅰ)证明:AC1⊥A1B;
(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.
20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.
(Ⅰ)求同一工作日至少3人需使用设备的概率;
(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.
21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.
22.(12分)函数f(x)=ln(x+1)﹣(a>1).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤
(n∈N*).
参考答案与试题解析
一、选择题(本大题共12小题,每小题5分)
1.(5分)设z=,则z的共轭复数为()
A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i
【考点】A1:虚数单位i、复数;A5:复数的运算.菁优网版权所有
【专题】5N:数系的扩充和复数.
【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.
【解答】解:∵z==
,
∴.
故选:D.
【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.
2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()
A.(0,4] B.[0,4) C.[﹣1,0) D.(﹣1,0]
【考点】1E:交集及其运算.菁优网版权所有
【专题】5J:集合.
【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.
【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.
∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},
又N={x|0≤x≤5},
∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).
故选:B.
【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.
3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()
A.a>b>c B.b>c>a C.c>b>a D.c>a>b
【考点】HF:正切函数的单调性和周期性.菁优网版权所有
【专题】56:三角函数的求值.
【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.
【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,
由正弦函数的单调性可知b>a,
而c=tan35°=>sin35°=b,
∴c>b>a
故选:C.
【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.
4.(5分)若向量、
满足:|
|=1,(
+
)⊥
,(2
+
)⊥
,则|
|=()
A.2 B. C.1 D.
【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有
【专题】5A:平面向量及应用.
【分析】由条件利用两个向量垂直的性质,可得(+
)•
=0,(2
+
)•
=0,由此求得|
|.
【解答】解:由题意可得,(+
)•
=
+
=1+
=0,∴
=﹣1;
(2+
)•
=2
+
=﹣2+
=0,∴b2=2,
则||=
,
故选:B.
【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.
5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()
A.60种 B.70种 C.75种 D.150种
【考点】D9:排列、组合及简单计数问题.菁优网版权所有
【专题】5O:排列组合.
【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.
【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,
再从5名女医生中选出1人,有C51=5种选法,
则不同的选法共有15×5=75种;
故选:C.
【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.
6.(5分)已知椭圆C:+
=1(a>b>0)的左、右焦点为F1、F2,离心率为
,过F2的直线l交C于A、B两点,若△AF1B的周长为4
,则C的方程为()
A.+
=1 B.
+y2=1 C.
+
=1 D.
+
=1
【考点】K4:椭圆的性质.菁优网版权所有
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】利用△AF1B的周长为4,求出a=
,根据离心率为
,可得c=1,求出b,即可得出椭圆的方程.
【解答】解:∵△AF1B的周长为4,
∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,
∴4a=4,
∴a=,
∵离心率为,
∴,c=1,
∴b==
,
∴椭圆C的方程为+
=1.
故选:A.
【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.
7.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()
A.2e B.e C.2 D.1
【考点】62:导数及其几何意义.菁优网版权所有
【专题】52:导数的概念及应用.
【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.
【解答】解:函数的导数为f′(x)=ex﹣1+xex﹣1=(1+x)ex﹣1,
当x=1时,f′(1)=2,
即曲线y=xex﹣1在点(1,1)处切线的斜率k=f′(1)=2,
故选:C.
【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.
8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()
A. B.16π C.9π D.
【考点】LG:球的体积和表面积;LR:球内接多面体.菁优网版权所有
【专题】11:计算题;5F:空间位置关系与距离.
【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.
【解答】解:设球的半径为R,则
∵棱锥的高为4,底面边长为2,
∴R2=(4﹣R)2+()2,
∴R=,
∴球的表面积为4π•()2=
.
故选:A.
【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.
9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()
A. B.
C.
D.
【考点】KC:双曲线的性质.菁优网版权所有
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.
【解答】解:∵双曲线C的离心率为2,
∴e=,即c=2a,
点A在双曲线上,
则|F1A|﹣|F2A|=2a,
又|F1A|=2|F2A|,
∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,
则由余弦定理得cos∠AF2F1==
=
.
故选:A.
【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.
10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()
A.6 B.5 C.4 D.3
【考点】89:等比数列的前n项和.菁优网版权所有
【专题】54:等差数列与等比数列.
【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.
【解答】解:∵数列{an}是等比数列,a4=2,a5=5,
∴a1a8=a2a7=a3a6=a4a5=10.
∴lga1+lga2+…+lga8
=lg(a1a2•…•a8)
=
4lg10
=4.
故选:C.
【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.
11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()
A. B.
C.
D.
【考点】LM:异面直线及其所成的角.菁优网版权所有
【专题】5G:空间角.
【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.
【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,
∵AE⊥l
∴∠EAC=90°
∵CD∥AF
又∠ACD=135°
∴∠FAC=45°
∴∠EAF=45°
在Rt△BEA中,设AE=a,则AB=2a,BE=a,
在Rt△AEF中,则EF=a,AF=a,
在Rt△BEF中,则BF=2a,
∴异面直线AB与CD所成的角即是∠BAF,
∴cos∠BAF==
=
.
故选:B.
【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.
12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()
A.y=g(x) B.y=g(﹣x) C.y=﹣g(x) D.y=﹣g(﹣x)
【考点】4R:反函数.菁优网版权所有
【专题】51:函数的性质及应用.
【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.
【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,
则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,
又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,
∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,
∴必有﹣y=g(﹣x),即y=﹣g(﹣x)
大家好,今天小编为大家整理了一些有关于全国统一高考数学试卷(理科)(大纲版)的内容,希望可以对大家有帮助,欢迎各位阅读和下载。
全国统一高考数学试卷(理科)(大纲版)
一、选择题(本大题共12小题,每小题5分)
1.(5分)设z=,则z的共轭复数为()
A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i
2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()
A.(0,4] B.[0,4) C.[﹣1,0) D.(﹣1,0]
3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()
A.a>b>c B.b>c>a C.c>b>a D.c>a>b
4.(5分)若向量、
满足:|
|=1,(
+
)⊥
,(2
+
)⊥
,则|
|=()
A.2 B. C.1 D.
5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()
A.60种 B.70种 C.75种 D.150种
6.(5分)已知椭圆C:+
=1(a>b>0)的左、右焦点为F1、F2,离心率为
,过F2的直线l交C于A、B两点,若△AF1B的周长为4
,则C的方程为()
A.+
=1 B.
+y2=1 C.
+
=1 D.
+
=1
7.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()
A.2e B.e C.2 D.1
8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()
A. B.16π C.9π D.
9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()
A. B.
C.
D.
10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()
A.6 B.5 C.4 D.3
11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()
A. B.
C.
D.
12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()
A.y=g(x) B.y=g(﹣x) C.y=﹣g(x) D.y=﹣g(﹣x)
二、填空题(本大题共4小题,每小题5分)
13.(5分)的展开式中x2y2的系数为 .(用数字作答)
14.(5分)设x、y满足约束条件,则z=x+4y的最大值为 .
15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于 .
16.(5分)若函数f(x)=cos2x+asinx在区间(,
)是减函数,则a的取值范围是 .
三、解答题
17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.
18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(Ⅰ)证明:AC1⊥A1B;
(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.