今天小编为大家整理了有关于全国统一高考数学试卷(文科)(新课标Ⅰ),希望可以对大家有帮助。
全国统一高考数学试卷(文科)(新课标Ⅰ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则|z|=()
A.2 B. C.
D.1
2.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁UA=()
A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}
3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()
A.a<b<c B.a<c<b C.c<a<b D.b<c<a
4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(
≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()
A.165cm B.175cm C.185cm D.190cm
5.(5分)函数f(x)=在[﹣π,π]的图象大致为()
A. B.
C. D.
6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()
A.8号学生 B.200号学生 C.616号学生 D.815号学生
7.(5分)tan255°=()
A.﹣2﹣ B.﹣2+
C.2﹣
D.2+
8.(5分)已知非零向量,
满足|
|=2|
|,且(
﹣
)⊥
,则
与
的夹角为()
A. B.
C.
D.
9.(5分)如图是求的程序框图,图中空白框中应填入()
A.A= B.A=2+
C.A=
D.A=1+
10.(5分)双曲线C:﹣
=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()
A.2sin40° B.2cos40° C. D.
11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知asinA﹣bsinB=4csinC,cosA=﹣,则
=()
A.6 B.5 C.4 D.3
12.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()
A.+y2=1 B.
+
=1
C.+
=1 D.
+
=1
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为 .
14.(5分)记Sn为等比数列{an}的前n项和.若a1=1,S3=,则S4= .
15.(5分)函数f(x)=sin(2x+)﹣3cosx的最小值为 .
16.(5分)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意不满意
男顾客4010
女顾客3020
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:K2=.
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
18.(12分)记Sn为等差数列{an}的前n项和.已知S9=﹣a5.
(1)若a3=4,求{an}的通项公式;
(2)若a1>0,求使得Sn≥an的n的取值范围.
19.(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
20.(12分)已知函数f(x)=2sinx﹣xcosx﹣x,f′(x)为f(x)的导数.
(1)证明:f′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
21.(12分)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.
(1)若A在直线x+y=0上,求⊙M的半径;
(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分)
22.(10分)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+
ρsinθ+11=0.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
[选修4-5:不等式选讲](10分)
23.已知a,b,c为正数,且满足abc=1.证明:
(1)+
+
≤a2+b2+c2;
(2)(a+b)3+(b+c)3+(c+a)3≥24.
全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则|z|=()
A.2 B. C.
D.1
【分析】直接利用复数商的模等于模的商求解.
【解答】解:由z=,得|z|=|
|=
.
故选:C.
【点评】本题考查复数模的求法,考查数学转化思想方法,是基础题.
2.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁UA=()
A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}
【分析】先求出∁UA,然后再求B∩∁UA即可求解
【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},
∴∁UA={1,6,7},
则B∩∁UA={6,7}
故选:C.
【点评】本题主要考查集合的交集与补集的求解,属于基础试题.
3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()
A.a<b<c B.a<c<b C.c<a<b D.b<c<a
【分析】由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.
【解答】解:a=log20.2<log21=0,
b=20.2>20=1,
∵0<0.20.3<0.20=1,
∴c=0.20.3∈(0,1),
∴a<c<b,
故选:B.
【点评】本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题.
4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(
≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()
A.165cm B.175cm C.185cm D.190cm
【分析】充分运用黄金分割比例,结合图形,计算可估计身高.
【解答】解:头顶至脖子下端的长度为26cm,
说明头顶到咽喉的长度小于26cm,
由头顶至咽喉的长度与咽喉至肚脐的长度之比是≈0.618,
可得咽喉至肚脐的长度小于≈42cm,
由头顶至肚脐的长度与肚脐至足底的长度之比是,
可得肚脐至足底的长度小于=110,
即有该人的身高小于110+68=178cm,
又肚脐至足底的长度大于105cm,
可得头顶至肚脐的长度大于105×0.618≈65cm,
即该人的身高大于65+105=170cm,
故选:B.
【点评】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.
5.(5分)函数f(x)=在[﹣π,π]的图象大致为()
A. B.
C. D.
【分析】由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.
【解答】解:∵f(x)=,x∈[﹣π,π],
∴f(﹣x)==﹣
=﹣f(x),
∴f(x)为[﹣π,π]上的奇函数,因此排除A;
又f()=
,因此排除B,C;
故选:D.
【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.
6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()
A.8号学生 B.200号学生 C.616号学生 D.815号学生
【分析】根据系统抽样的特征,从1000名学生从中抽取一个容量为100的样本,抽样的分段间隔为10,结合从第4组抽取的号码为46,可得第一组用简单随机抽样抽取的号码.
【解答】解::∵从1000名学生从中抽取一个容量为100的样本,
∴系统抽样的分段间隔为=10,
∵46号学生被抽到,
则根据系统抽样的性质可知,第一组随机抽取一个号码为6,以后每个号码都比前一个号码增加10,所有号码数是以6为首项,以10为公差的等差数列,
设其数列为{an},则an=6+10(n﹣1)=10n﹣4,
当n=62时,a62=616,即在第62组抽到616.
故选:C.
【点评】本题考查了系统抽样方法,关键是求得系统抽样的分段间隔.
7.(5分)tan255°=()
A.﹣2﹣ B.﹣2+
C.2﹣
D.2+
【分析】利用诱导公式变形,再由两角和的正切求解.
【解答】解:tan255°=tan(180°+75°)=tan75°=tan(45°+30°)
==
=
.
故选:D.
【点评】本题考查三角函数的取值,考查诱导公式与两角和的正切,是基础题.
8.(5分)已知非零向量,
满足|
|=2|
|,且(
﹣
)⊥
,则
与
的夹角为()
A. B.
C.
D.
【分析】由(﹣
)⊥
,可得
,进一步得到
,然后求出夹角即可.
【解答】解:∵(﹣
)⊥
,
∴
=,
∴
==
,
∵,
∴.
故选:B.
【点评】本题考查了平面向量的数量积和向量的夹角,属基础题.
9.(5分)如图是求的程序框图,图中空白框中应填入()
A.A= B.A=2+
C.A=
D.A=1+
【分析】模拟程序的运行,由题意,依次写出每次得到的A的值,观察规律即可得解.
【解答】解:模拟程序的运行,可得:
A=,k=1;
满足条件k≤2,执行循环体,A=,k=2;
满足条件k≤2,执行循环体,A=,k=3;
此时,不满足条件k≤2,退出循环,输出A的值为,
观察A的取值规律可知图中空白框中应填入A=.
故选:A.
【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.
10.(5分)双曲线C:﹣
=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()
A.2sin40° B.2cos40° C. D.
【分析】由已知求得,化为弦函数,然后两边平方即可求得C的离心率.
【解答】解:双曲线C:﹣
=1(a>0,b>0)的渐近线方程为y=
,
由双曲线的一条渐近线的倾斜角为130°,得,
则=
,
∴=
,
得,
∴e=.
故选:D.
【点评】本题考查双曲线的简单性质,考查同角三角函数基本关系式的应用,是基础题.
11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知asinA﹣bsinB=4csinC,cosA=﹣,则
=()
A.6 B.5 C.4 D.3
【分析】利用正弦定理和余弦定理列出方程组,能求出结果.
【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c,
asinA﹣bsinB=4csinC,cosA=﹣,
∴,
解得3c2=,
∴=6.
故选:A.
【点评】本题考查了正弦定理、余弦定理、三角函数性质,考查了推理能力与计算能力,属于中档题.
12.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()
A.+y2=1 B.
+
=1
C.+
=1 D.
+
=1
【分析】根据椭圆的定义以及余弦定理列方程可解得a=,b=
,可得椭圆的方程.
【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,
又|AB|=|BF1|,∴|BF1|=3|BF2|,
又|BF1|+|BF2|=2a,∴|BF2|=,
∴|AF2|=a,|BF1|=a,
∵|AF1|+|AF2|=2a,∴|AF1|=a,
∴|AF1|=|AF2|,∴A在y轴上.
在Rt△AF2O中,cos∠AF2O=,
在△BF1F2中,由余弦定理可得cos∠BF2F1=,
根据cos∠AF2O+cos∠BF2F1=0,可得+
=0,解得a2=3,∴a=
.
b2=a2﹣c2=3﹣1=2.
所以椭圆C的方程为:+
=1.
故选:B.
今天小编为大家整理了有关于全国统一高考数学试卷(文科)(新课标Ⅰ),希望可以对大家有帮助。
全国统一高考数学试卷(文科)(新课标Ⅰ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则|z|=()
A.2 B. C.
D.1
2.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁UA=()
A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}
3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()
A.a<b<c B.a<c<b C.c<a<b D.b<c<a
4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(
≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()
A.165cm B.175cm C.185cm D.190cm
5.(5分)函数f(x)=在[﹣π,π]的图象大致为()
A. B.
C. D.
6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()
A.8号学生 B.200号学生 C.616号学生 D.815号学生
7.(5分)tan255°=()
A.﹣2﹣ B.﹣2+
C.2﹣
D.2+
8.(5分)已知非零向量,
满足|
|=2|
|,且(
﹣
)⊥
,则
与
的夹角为()
A. B.
C.
D.
9.(5分)如图是求的程序框图,图中空白框中应填入()
A.A= B.A=2+
C.A=
D.A=1+
10.(5分)双曲线C:﹣
=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()
A.2sin40° B.2cos40° C. D.
11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知asinA﹣bsinB=4csinC,cosA=﹣,则
=()
A.6 B.5 C.4 D.3
12.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()
A.+y2=1 B.
+
=1
C.+
=1 D.
+
=1
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为 .
14.(5分)记Sn为等比数列{an}的前n项和.若a1=1,S3=,则S4= .
15.(5分)函数f(x)=sin(2x+)﹣3cosx的最小值为 .
16.(5分)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意不满意