小学的时候做一些思维训练题能很好的锻炼智力,下面小编整理了小学奥数100道试题及答案,欢迎大家复制和下载。
1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米
解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差
所以乙丙相遇时间=270÷()=36分钟,所以路程=36×(60+75)=4860米。
2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远(第六届《小数报》数学竞赛初赛题第1题)
解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。
3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)
解:画示意图如下.
第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了×3=(千米).
从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是
=(千米).
每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了
×7=(千米),
=++(千米).
就知道第四次相遇处,离乙村
(千米).
答:第四次相遇地点离乙村1千米.
4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等
解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)
5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择
解答:9+3+2=14(种)
6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子
解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)
7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚
解答:20×20=400(个) 400+8×(1+2+3)=448(个)
448÷4=112(个) 112÷4+1=29(个)
8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配
解答:从最不利的情形考虑。用10把钥匙依次去试第一把锁,最不利的情况是试验了9次,前8次都没打开,第 9次无论打开或没打开,都能确定与这把锁相匹配的钥匙(若没打开,则第10把钥匙与这把锁相匹配)。同理,第二把锁试验8次……第九把锁只需试验1次,第十把锁不用再试(为什么)。共要试验9+8+7+…+2+1=45(次)。所以,最少试验45次就一定能使全部的钥匙和锁相匹配。
9.将60个红球和8个白球排成一圈,相邻红球个数最多的那一组至少有几个球
解答:60÷8=7……6 7+1=8(个)
10.在一个两位数的两个数字之间加一个0,所得三位数比原来大8,求这个两位数是多少
解答:设两位数为ab ,根据位值原则得到100a+b=90a+9b
10a=8b 5a=4b a=4 b=5 这个两位数是45
11.一个回文数是这样的整数,它的各位数字从左到右与从右到左念都一样,例如8338、1331、12321。已知:A、B、C都是回文数,A、B是四位数,C是五位数,A+B=C,那么C是多少
解答:如图
显然e=1 a+c=11
如果百位相加向上进位,则f=2 从而得到b+d=11, C=12221
如果百位相加不向上进位,则f=1 从而得到b+d=0,C=11011
所以C是12221或11011。
12.先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,( ),16,19
【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
13.先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,( ),22,26
(2)3,6,9,12,( ),18,21
(3)33,28,23,( ),13,( ),3
(4)55,49,43,( ),31,( ),19
(5)3,6,12,( ),48,( ),192
(6)2,6,18,( ),162,( )
(7)128,64,32,( ),8,( ),2
(8)19,3,17,3,15,3,( ),( ),11,3..
14.先找出下列数排列的规律,然后在括号里填上适当的数。1,2,4,7,( ),16,22
【思路导航】在这列数中,前4个数每相邻的两个数的差依次是1,2,3。由此可以推算7比括号里的数少4,括号里应填:7+4=11。经验证,所填的数是正确的。
应填的数为:7+4=11或16-5=11。
15.先找出下列数排列的规律,然后在括号里填上适当的数。
(1)10,11,13,16,20,( ),31
(2)1,4,9,16,25,( ),49,64
(3)3,2,5,2,7,2,( ),( ),11,2
(4)53,44,36,29,( ),18,( ),11,9,8
(5)81,64,49,36,( ),16,( ),4,1,0
(6)28,1,26,1,24,1,( ),( ),20,1
(7)30,2,26,2,22,2,( ),( ),14,2
(8)1,6,4,8,7,10,( ),( ),13,14
16.先找出规律,然后在括号里填上适当的数。
23,4,20,6,17,8,( ),( ),11,12
【思路导航】在这列数中,第一个数减去3的差是第三个数,第二个数加上2的和是第四个数,第三个数减去3的差是第五个数,第四个数加上2的和是第六个数……依此规律,8后面的一个数为:17-3=14,11前面的数为:8+2=10
17.先找出规律,然后在括号里填上适当的数。
(1)1,6,5,10,9,14,13,( ),( )
(2)13,2,15,4,17,6,( ),( )
(3)3,29,4,28,6,26,9,23,( ),( ),18,14
(4)21,2,19,5,17,8,( ),( )
(5)32,20,29,18,26,16,( ),( ),20,12
(6)2,9,6,10,18,11,54,( ),( ),13,486
(7)1,5,2,8,4,11,8,14,( ),( )
(8)320,1,160,3,80,9,40,27,( ),( )
18.在数列1,1,2,3,5,8,13,( ),34,55……中,括号里应填什么数
【思路导航】经仔细观察、分析,不难发现:从第三个数开始,每一个数都等于它前面两个数的和。根据这一规律,括号里应填的数为:8+13=21或34-13=21
上面这个数列叫做斐波那切(意大利古代著名数学家)数列,也叫做“兔子数列”。
19.先找出规律,然后在括号里填上适当的数。
(1)2,2,4,6,10,16,( ),( )
(2)34,21,13,8,5,( ),2,( )
(3)0,1,3,8,21,( ),144
(4)3,7,15,31,63,( ),( )
(5)33,17,9,5,3,( )
(6)0,1,4,15,56,( )
(7)1,3,6,8,16,18,( ),( ),76,78
(8)0,1,2,4,7,12,20,( )
20.根据下表中的排列规律,在空格里填上适当的数。
【思路导航】经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和。依此规律,空格中应填的数为:4+8=12。
21.找规律,在空格里填上适当的数。
22.根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数
【思路导航】经仔细观察、分析可以发现前面两个圈中三个数之间有这样的关系:5×12÷10=6 4×20÷10=8
根据这一规律,第三个圈中右下角应填的数为:8×30÷10=24.
23.根据前面图形中数之间的关系,想一想第三个图形的空格里应填什么数。
(1)
(2)
(3)
24.先计算下面一组算式的第一题,然后找出其中的规律,并根据规律直接写出后几题的得数。×9= ×18=×54= ×81=
【思路导航】题中每个算式的第一个因数都是,它是有趣的“缺8数”,与9相乘,结果是由九个1组成的九位数,即:1。不难发现,这组题得数的规律是:只要看每道算式的第二个因数中包含几个9,乘积中就包含几个1。
因为:×9=1
所以:×18=×9×2=2
×54=×9×6=6 ×81=×9×9=9.
练习3:找规律,写得数。
(1) 1+0×9= 2+1×9= 3+12×9= 4+123×9= 9+×9=
(2) 1×1= 11×11= 111×111= 1×1=
(3)19+9×9= 118+98×9= 1117+987×9=11116+9876×9= 111115+98765×9=
25.找规律计算。(1) 81-18=(8-1)×9=7×9=63
(2) 72—27=(7-2)×9=5×9=45 (3) 63-36=(□-□)×9=□×9=□
【思路导航】经仔细观察、分析可以发现:一个两位数与交换它的十位、个位数字位置后的两位数相减,只要用十位与个位数字的差乘9,所得的积就是这两个数的差。
26.
1.利用规律计算。(1)53-35 (2)82-28 (3)92-29 (4)61-16 (5)95-59
2.找规律计算。(1) 62+26=(6+2)×11=8×11=88(2) 87+78=(8+7)×11=15×11=165(3) 54+45=(□+□)×11=□×11=□
27.计算(1)26×11 (2)38×11
【思路导航】一个两位数与11相乘,只要把这个两位数的两个数字的和插入这两个数字中间,就是所求的积。(1) 26×11=2(2+6)6=286(2) 38×11=3(3+8)8=418
注意:如果两个数字的和满十,要向前一位进一。
28.计算下面各题。
(1)27×11
(2)32×11
(3) 39×11