下面学习啦小编整理了小学六年级奥数练习题及答案解析9篇,希望能帮助到大家。

小学六年级奥数练习题及答案解析1

1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:

288(10-1)=32(元)

一张桌子的价钱:

3210=320(元)

答:一张桌子320元,一把椅子32元。

2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+53

=45+15

=60(千克)

答:3箱梨重60千克。

3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走42千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

解:424

=84

=2(千米)

答:甲每小时比乙快2千米。

4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6[13-(13+7)2]

=0.6[13-202]

=0.63

=0.2(元)

答:每支铅笔0.2元。

5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

解:下午2点是14时。

往返用的时间:14-8=6(时)

两地间路程:(40+45)62

=8562

=255(千米)

答:两地相距255千米。

6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(4.5-3.5)千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:

3.5-(4.5-3.5)=3.5-1=2.5(千米)

第一组追赶第二组所用时间:

2.5(4.5-3.5)=2.51=2.5(小时)

答:第一组2.5小时能追上第二小组。

7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

解:乙仓存粮:

(32.52+5)(4+1)

=(65+5)5

=705

=14(吨)

甲仓存粮:

144-5

=56-5

=51(吨)

答:甲仓存粮51吨,乙仓存粮14吨。

8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

解:乙每天修的米数:

(400-104)(4+5)

=(400-40)9

=3609

=40(米)

甲乙两队每天共修的米数:

402+10=80+10=90(米)

答:两队每天修90米。

9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少306元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

解:每把椅子的价钱:

(455-306)(6+5)

=(455-180)11

=27511

=25(元)

每张桌子的价钱:

25+30=55(元)

答:每张桌子55元,每把椅子25元。

10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

解:(7+65)[40(75-65)]

=140[4010]

=1404

=560(千米)

答:甲乙两地相距560千米。

小学六年级奥数练习题及答案解析2

1.45立方厘米的水结成冰后,冰的体积是50立方厘米,冰的体积比原来水的体积增加了百分之几?

答案:11.1%

解析:已知水的体积是45,冰的体积是50,那么增加了50-45=5,增加的百分数就是5÷45=11.1%

2.老师买了同样6支钢笔和9本笔记本,一共付了90元,已知2支钢笔可以买3个笔记本,求钢笔和笔记本的单价各是多少?

答案:钢笔是7.5元,笔记本是5元一本。

解析:已知2支钢笔可以买3本笔记本,同理,6支钢笔和9本笔记本就相当于18本笔记本,一共付了90元,所以每本笔记本是90÷18=5元,同理算出钢笔是7.5元。

3.菜场里面瘦肉的单价是肥肉的2倍,奶奶买了2千克的瘦肉和8千克的肥肉,共用去216元,1千克瘦肉多少元?1千克肥肉多少元?

答案:肥肉:18元,瘦肉:36元

解析:假设216全部买的肥肉,那么肥肉的价格为:216÷(2*2+8)=18元,瘦肉就是:18*2=36元

4.若干盐水加入一定量的水后,盐水浓度降到3%,再加入同样多的水后浓度降低到2%,问,如果再加入同样多的水后,浓度降低到多少?

答案:1.5%

解析:设盐水原来有X克,加入的水为Y克,根据加水之后溶质是不变的,列方程:(X+Y)×3%=(X+2Y)×2%

解得:X=Y,再加入同样多的水后浓度为:3%÷2=1.5%

5.甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?

答案:432分钟

解析:甲行驶2.5小时的路程,乙用了3.5小时。所以甲乙的速度比为7:5,走相同路程的时间比是5:7。

那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。

小学六年级奥数练习题及答案解析3

1.在钟面上5时多少分时,分针与时针在一条直线上,而指向相反?

分析在正5时时,时针与分针相隔150°。然后随时间的消逝,分针先是追上时针,在此时间内,分针需比时针多行走150°,然后超越时针180°就成一条直线且指向相反了。

解360÷12×5=150(度)

(150+180)÷(6—0.5)=60(分)

5时60分即6时正。

答分针与时针在同一条直线上且指向相反时应是5时60分,即6时正。

2.分母不大于60,分子小于6的最简真分数有____个?

答案与解析:

分类讨论:

(1)分子是1,分母是2~60的最简真分数有59个:

(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);

(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);

(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);

(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5—44(个)。

这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个)

某个团队现有4个成员。他们的年龄各不相同,总和是129岁,其中有3个人的年龄是平方数。如果倒退15年,这4人中仍有3人的年龄是平方数。你知道他们各自的年龄吗?

答案与解析:因为4个人年龄可以倒退15年,所以,每个人的年龄都应大于15岁;

因为他们的年龄总和是129,所以,年龄最大的也不会超129-3*(16+17+18)=78岁。

有3个人的.年龄是平方数。

那么,这3个人的年龄只可能是16、25、36、49、64。

最新的小学六年级奥数题及答案《年龄趣题》:在这5个数中,只有16、34减去15后,仍然还是一个数的平方数,

所以,一定有1人是16岁,有1人是64岁。

另外2人的年龄和是:129-16-64=49

在这里有1人年龄是个平方数,而另一个人的年龄不低于16岁,经比较可知,一个人的年龄是25岁,最后一个人的年龄是24岁。

经检验,24-15=9 9刚好是一个平方数,与题意相符。

所以。他们4人年龄分别是:16、24、25、64

3.快车和慢车分别从A,B两地同时开出,相向而行。经过5小时两车相遇。已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回。快车到B停留1小时后返回。问:两车从第一次相遇到再相遇共需多少时间?

【答案解析】

解:画一张示意图:

已付费

点赞(0)
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部