今天小编为大家整理了有关于全国统一高考数学试卷(理科)(新课标Ⅲ),希望可以对大家有帮助。

全国统一高考数学试卷(理科)(新课标Ⅲ)

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()

A.{﹣1,0,1} B.{0,1} C.{﹣1,1} D.{0,1,2}

2.(5分)若z(1+i)=2i,则z=()

A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i

3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()

A.0.5 B.0.6 C.0.7 D.0.8

4.(5分)(1+2x2)(1+x)4的展开式中x3的系数为()

A.12 B.16 C.20 D.24

5.(5分)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=()

A.16 B.8 C.4 D.2

6.(5分)已知曲线y=aex+xlnx在点(1,ae)处的切线方程为y=2x+b,则()

A.a=e,b=﹣1 B.a=e,b=1 C.a=e﹣1,b=1 D.a=e﹣1,b=﹣1

7.(5分)函数y=在[﹣6,6]的图象大致为()

A. B.

C.⊈ D.

8.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()

A.BM=EN,且直线BM,EN是相交直线

B.BM≠EN,且直线BM,EN是相交直线

C.BM=EN,且直线BM,EN是异面直线

D.BM≠EN,且直线BM,EN是异面直线

9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()

A.2﹣ B.2﹣ C.2﹣ D.2﹣

10.(5分)双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO的面积为()

A. B. C.2 D.3

11.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()

A.f(log3)>f(2)>f(2

B.f(log3)>f(2)>f(2

C.f(2)>f(2)>f(log3

D.f(2)>f(2)>f(log3

12.(5分)设函数f(x)=sin(ωx+)(ω>0),已知f(x)在[0,2π]有且仅有5个零点.下述四个结论:

①f(x)在(0,2π)有且仅有3个极大值点

②f(x)在(0,2π)有且仅有2个极小值点

③f(x)在(0,)单调递增

④ω的取值范围是[

其中所有正确结论的编号是()

A.①④ B.②③ C.①②③ D.①③④

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)已知为单位向量,且=0,若=2,则cos<>= .

14.(5分)记Sn为等差数列{an}的前n项和.若a1≠0,a2=3a1,则= .

15.(5分)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为 .

16.(5分)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为 g.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。

17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:

记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.

(1)求乙离子残留百分比直方图中a,b的值;

(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).

18.△ABC的内角A、B、C的对边分别为a,b,c.已知asin=bsinA.

(1)求B;

(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.

19.图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.

(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;

(2)求图2中的二面角B﹣CG﹣A的大小.

20.已知函数f(x)=2x3﹣ax2+b.

(1)讨论f(x)的单调性;

(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为﹣1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.

21.已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.

(1)证明:直线AB过定点;

(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)

22.如图,在极坐标系Ox中,A(2,0),B(),C(),D(2,π),弧所在圆的圆心分别是(1,0),(1,),(1,π),曲线M1是弧,曲线M2是弧,曲线M3是弧

(1)分别写出M1,M2,M3的极坐标方程;

(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=,求P的极坐标.

[选修4-5:不等式选讲](10分)

23.设x,y,z∈R,且x+y+z=1.

(1)求(x﹣1)2+(y+1)2+(z+1)2的最小值;

(2)若(x﹣2)2+(y﹣1)2+(z﹣a)2≥成立,证明:a≤﹣3或a≥﹣1.

全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()

A.{﹣1,0,1} B.{0,1} C.{﹣1,1} D.{0,1,2}

【分析】解求出B中的不等式,找出A与B的交集即可.

【解答】解:因为A={﹣1,0,1,2},B={x|x2≤1}={x|﹣1≤x≤1},

所以A∩B={﹣1,0,1},

故选:A.

【点评】本题考查了两个集合的交集和一元二次不等式的解法,属基础题.

2.(5分)若z(1+i)=2i,则z=()

A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i

【分析】利用复数的运算法则求解即可.

【解答】解:由z(1+i)=2i,得

z=

=1+i.

故选:D.

【点评】本题主要考查两个复数代数形式的乘法和除法法则,虚数单位i的幂运算性质,属于基础题.

3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()

A.0.5 B.0.6 C.0.7 D.0.8

【分析】作出维恩图,得到该学校阅读过《西游记》的学生人数为70人,由此能求出该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值.

【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,

其中阅读过《西游记》或《红楼梦》的学生共有90位,

阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,

作出维恩图,得:

∴该学校阅读过《西游记》的学生人数为70人,

则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:=0.7.

故选:C.

【点评】本题考查该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值的求法,考查维恩图的性质等基础知识,考查推理能力与计算能力,属于基础题.

4.(5分)(1+2x2)(1+x)4的展开式中x3的系数为()

A.12 B.16 C.20 D.24

【分析】利用二项式定理、排列组合的性质直接求解.

【解答】解:(1+2x2)(1+x)4的展开式中x3的系数为:

+2×=12.

故选:A.

【点评】本题考查展开式中x3的系数的求法,考查二项式定理、排列组合的性质等基础知识,考查推理能力与计算能力,属于基础题.

5.(5分)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=()

A.16 B.8 C.4 D.2

【分析】设等比数列{an}的公比为q(q>0),根据条件可得,解方程即可.

【解答】解:设等比数列{an}的公比为q(q>0),

则由前4项和为15,且a5=3a3+4a1,有

,∴

故选:C.

【点评】本题考查了等差数列的性质和前n项和公式,考查了方程思想,属基础题.

6.(5分)已知曲线y=aex+xlnx在点(1,ae)处的切线方程为y=2x+b,则()

A.a=e,b=﹣1 B.a=e,b=1 C.a=e﹣1,b=1 D.a=e﹣1,b=﹣1

【分析】求得函数y的导数,可得切线的斜率,由切线方程,可得ae+1+0=2,可得a,进而得到切点,代入切线方程可得b的值.

【解答】解:y=aex+xlnx的导数为y′=aex+lnx+1,

由在点(1,ae)处的切线方程为y=2x+b,

可得ae+1+0=2,解得a=e﹣1,

又切点为(1,1),可得1=2+b,即b=﹣1,

故选:D.

【点评】本题考查导数的运用:求切线的斜率,考查直线方程的运用,考查方程思想和运算能力,属于基础题.

7.(5分)函数y=在[﹣6,6]的图象大致为()

A. B.

C.⊈ D.

【分析】由y=的解析式知该函数为奇函数可排除C,然后计算x=4时的函数值,根据其值即可排除A,D.

【解答】解:由y=f(x)=在[﹣6,6],知

f(﹣x)=

∴f(x)是[﹣6,6]上的奇函数,因此排除C

又f(4)=,因此排除A,D.

故选:B.

【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.

8.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()

A.BM=EN,且直线BM,EN是相交直线

B.BM≠EN,且直线BM,EN是相交直线

C.BM=EN,且直线BM,EN是异面直线

D.BM≠EN,且直线BM,EN是异面直线

【分析】推导出BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,从而直线BM,EN是相交直线,设DE=a,则BD=,BE=,从而BM≠EN.

【解答】解:∵点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,

∴BM⊂平面BDE,EN⊂平面BDE,

∵BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,

∴直线BM,EN是相交直线,

设DE=a,则BD=,BE=

∴BM=a,EN==a,

∴BM≠EN,

故选:B.

【点评】本题考查两直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.

9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()

A.2﹣ B.2﹣ C.2﹣ D.2﹣

【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量s的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

【解答】解:第一次执行循环体后,s=1,x=,不满足退出循环的条件x<0.01;

再次执行循环体后,s=1+,x=,不满足退出循环的条件x<0.01;

再次执行循环体后,s=1++,x=,不满足退出循环的条件x<0.01;

由于>0.01,而<0.01,可得:

当s=1++++…,x=,此时,满足退出循环的条件x<0.01,

输出s=1+++…=2﹣

故选:C.

【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.

10.(5分)双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO的面积为()

A. B. C.2 D.3

【分析】求出双曲线的渐近线方程,求出三角形POF的顶点P的坐标,然后求解面积即可.

【解答】解:双曲线C:=1的右焦点为F(,0),渐近线方程为:y=x,不妨P在第一象限,

可得tan∠POF=,P(),

所以△PFO的面积为:

故选:A.

【点评】本题考查双曲线的简单性质的应用,是基本知识的考查.

11.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()

A.f(log3)>f(2)>f(2

B.f(log3)>f(2)>f(2

C.f(2)>f(2)>f(log3

D.f(2)>f(2)>f(log3

【分析】根据log34>log33=1,,结合f(x)的奇偶和单调性即可判断.

【解答】解:∵f(x)是定义域为R的偶函数

∵log34>log33=1,

∴0

f(x)在(0,+∞)上单调递减,

故选:C.

【点评】本题考查了函数的奇偶性和单调性,关键是指对数函数单调性的灵活应用,属基础题.

12.(5分)设函数f(x)=sin(ωx+)(ω>0),已知f(x)在[0,2π]有且仅有5个零点.下述四个结论:

①f(x)在(0,2π)有且仅有3个极大值点

②f(x)在(0,2π)有且仅有2个极小值点

③f(x)在(0,)单调递增

④ω的取值范围是[

其中所有正确结论的编号是()

A.①④ B.②③ C.①②③ D.①③④

【分析】根据f(x)在[0,2π]有且仅有5个零点,可得,解出ω,然后判断③是否正确即可得到答案.

【解答】解:当x∈[0,2π]时,∈[],

今天小编为大家整理了有关于全国统一高考数学试卷(理科)(新课标Ⅲ),希望可以对大家有帮助。

全国统一高考数学试卷(理科)(新课标Ⅲ)

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()

A.{﹣1,0,1} B.{0,1} C.{﹣1,1} D.{0,1,2}

2.(5分)若z(1+i)=2i,则z=()

A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i

3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()

A.0.5 B.0.6 C.0.7 D.0.8

4.(5分)(1+2x2)(1+x)4的展开式中x3的系数为()

A.12 B.16 C.20 D.24

5.(5分)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=()

A.16 B.8 C.4 D.2

6.(5分)已知曲线y=aex+xlnx在点(1,ae)处的切线方程为y=2x+b,则()

A.a=e,b=﹣1 B.a=e,b=1 C.a=e﹣1,b=1 D.a=e﹣1,b=﹣1

7.(5分)函数y=在[﹣6,6]的图象大致为()

A. B.

C.⊈ D.

8.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()

A.BM=EN,且直线BM,EN是相交直线

B.BM≠EN,且直线BM,EN是相交直线

C.BM=EN,且直线BM,EN是异面直线

D.BM≠EN,且直线BM,EN是异面直线

9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()

A.2﹣ B.2﹣ C.2﹣ D.2﹣

10.(5分)双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO的面积为()

A. B. C.2 D.3

11.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()

A.f(log3)>f(2)>f(2

B.f(log3)>f(2)>f(2

C.f(2)>f(2)>f(log3

D.f(2)>f(2)>f(log3

12.(5分)设函数f(x)=sin(ωx+)(ω>0),已知f(x)在[0,2π]有且仅有5个零点.下述四个结论:

①f(x)在(0,2π)有且仅有3个极大值点

②f(x)在(0,2π)有且仅有2个极小值点

③f(x)在(0,)单调递增

④ω的取值范围是[

其中所有正确结论的编号是()

温馨提示! 你需要支付 ¥1.00 元后才能查看付费内容
点赞(0)
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部