今天小编为大家整理了有关于高考全国卷理科数学试卷及答案,希望可以对大家有帮助。

全国统一高考数学试卷(理科)(新课标Ⅰ)

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()

A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}

2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()

A.(x+1)2+y2=1 B.(x﹣1)2+y2=1

C.x2+(y﹣1)2=1 D.x2+(y+1)2=1

3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()

A.a<b<c B.a<c<b C.c<a<b D.b<c<a

4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()

A.165cm B.175cm C.185cm D.190cm

5.(5分)函数f(x)=在[﹣π,π]的图象大致为()

A. B.

C. D.

6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()

A. B. C. D.

7.(5分)已知非零向量满足||=2||,且()⊥,则的夹角为()

A. B. C. D.

8.(5分)如图是求的程序框图,图中空白框中应填入()

A.A= B.A=2+ C.A= D.A=1+

9.(5分)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则()

A.an=2n﹣5 B.an=3n﹣10 C.Sn=2n2﹣8n D.Sn=n2﹣2n

10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()

A.+y2=1 B.+=1

C.+=1 D.+=1

11.(5分)关于函数f(x)=sin|x|+|sinx|有下述四个结论:

①f(x)是偶函数

②f(x)在区间(,π)单调递增

③f(x)在[﹣π,π]有4个零点

④f(x)的最大值为2

其中所有正确结论的编号是()

A.①②④ B.②④ C.①④ D.①③

12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()

A.8π B.4π C.2π D.π

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为 .

14.(5分)记Sn为等比数列{an}的前n项和.若a1=,a42=a6,则S5= .

15.(5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .

16.(5分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=0,则C的离心率为 .

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)△ABC的内角A,B,C的对边分别为a,b,c.设(sinB﹣sinC)2=sin2A﹣sinBsin C.

(1)求A;

(2)若a+b=2c,求sinC.

18.(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

(1)证明:MN∥平面C1DE;

(2)求二面角A﹣MA1﹣N的正弦值.

19.(12分)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.

(1)若|AF|+|BF|=4,求l的方程;

(2)若=3,求|AB|.

20.(12分)已知函数f(x)=sinx﹣ln(1+x),f′(x)为f(x)的导数.证明:

(1)f′(x)在区间(﹣1,)存在唯一极大值点;

(2)f(x)有且仅有2个零点.

21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.

(1)求X的分布列;

(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api﹣1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.

(i)证明:{pi+1﹣pi}(i=0,1,2,…,7)为等比数列;

(ii)求p4,并根据p4的值解释这种试验方案的合理性.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

[选修4-4:坐标系与参数方程](10分)

22.(10分)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+ρsinθ+11=0.

(1)求C和l的直角坐标方程;

(2)求C上的点到l距离的最小值.

[选修4-5:不等式选讲](10分)

23.已知a,b,c为正数,且满足abc=1.证明:

(1)++≤a2+b2+c2;

(2)(a+b)3+(b+c)3+(c+a)3≥24.

高考全国卷理科数学试卷及答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()

A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}

【分析】利用一元二次不等式的解法和交集的运算即可得出.

【解答】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},

∴M∩N={x|﹣2<x<2}.

故选:C.

【点评】本题考查了一元二次不等式的解法和交集的运算,属基础题.

2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()

A.(x+1)2+y2=1 B.(x﹣1)2+y2=1

C.x2+(y﹣1)2=1 D.x2+(y+1)2=1

【分析】由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z﹣i|=1即可得解.

【解答】解:∵z在复平面内对应的点为(x,y),

∴z=x+yi,

∴z﹣i=x+(y﹣1)i,

∴|z﹣i|=

∴x2+(y﹣1)2=1,

故选:C.

【点评】本题考查复数的模、复数的几何意义,正确理解复数的几何意义是解题关键,属基础题.

3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()

A.a<b<c B.a<c<b C.c<a<b D.b<c<a

【分析】由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.

【解答】解:a=log20.2<log21=0,

b=20.2>20=1,

∵0<0.20.3<0.20=1,

∴c=0.20.3∈(0,1),

∴a<c<b,

故选:B.

【点评】本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题.

4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()

A.165cm B.175cm C.185cm D.190cm

【分析】充分运用黄金分割比例,结合图形,计算可估计身高.

【解答】解:头顶至脖子下端的长度为26cm,

说明头顶到咽喉的长度小于26cm,

由头顶至咽喉的长度与咽喉至肚脐的长度之比是≈0.618,

可得咽喉至肚脐的长度小于≈42cm,

由头顶至肚脐的长度与肚脐至足底的长度之比是

可得肚脐至足底的长度小于=110,

即有该人的身高小于110+68=178cm,

又肚脐至足底的长度大于105cm,

可得头顶至肚脐的长度大于105×0.618≈65cm,

即该人的身高大于65+105=170cm,

故选:B.

【点评】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.

5.(5分)函数f(x)=在[﹣π,π]的图象大致为()

A. B.

C. D.

【分析】由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.

【解答】解:∵f(x)=,x∈[﹣π,π],

∴f(﹣x)==﹣=﹣f(x),

∴f(x)为[﹣π,π]上的奇函数,因此排除A;

又f()=,因此排除B,C;

故选:D.

【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.

6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()

A. B. C. D.

【分析】基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.

【解答】解:在所有重卦中随机取一重卦,

基本事件总数n=26=64,

该重卦恰有3个阳爻包含的基本个数m==20,

则该重卦恰有3个阳爻的概率p=

故选:A.

【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.

7.(5分)已知非零向量满足||=2||,且()⊥,则的夹角为()

A. B. C. D.

【分析】由()⊥,可得,进一步得到,然后求出夹角即可.

【解答】解:∵()⊥

故选:B.

【点评】本题考查了平面向量的数量积和向量的夹角,属基础题.

8.(5分)如图是求的程序框图,图中空白框中应填入()

A.A= B.A=2+ C.A= D.A=1+

【分析】模拟程序的运行,由题意,依次写出每次得到的A的值,观察规律即可得解.

【解答】解:模拟程序的运行,可得:

A=,k=1;

满足条件k≤2,执行循环体,A=,k=2;

满足条件k≤2,执行循环体,A=,k=3;

此时,不满足条件k≤2,退出循环,输出A的值为

观察A的取值规律可知图中空白框中应填入A=

故选:A.

【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

9.(5分)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则()

A.an=2n﹣5 B.an=3n﹣10 C.Sn=2n2﹣8n D.Sn=n2﹣2n

【分析】根据题意,设等差数列{an}的公差为d,则有,求出首项和公差,然后求出通项公式和前n项和即可.

【解答】解:设等差数列{an}的公差为d,

由S4=0,a5=5,得

,∴

∴an=2n﹣5,

故选:A.

【点评】本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题.

10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()

A.+y2=1 B.+=1

C.+=1 D.+=1

【分析】根据椭圆的定义以及余弦定理列方程可解得a=,b=,可得椭圆的方程.

【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,

又|AB|=|BF1|,∴|BF1|=3|BF2|,

又|BF1|+|BF2|=2a,∴|BF2|=

∴|AF2|=a,|BF1|=a,

∵|AF1|+|AF2|=2a,∴|AF1|=a,

∴|AF1|=|AF2|,∴A在y轴上.

在Rt△AF2O中,cos∠AF2O=

在△BF1F2中,由余弦定理可得cos∠BF2F1=

根据cos∠AF2O+cos∠BF2F1=0,可得+=0,解得a2=3,∴a=

b2=a2﹣c2=3﹣1=2.

所以椭圆C的方程为:+=1.

故选:B.

【点评】本题考查了椭圆的性质,属中档题.

11.(5分)关于函数f(x)=sin|x|+|sinx|有下述四个结论:

①f(x)是偶函数

②f(x)在区间(,π)单调递增

③f(x)在[﹣π,π]有4个零点

④f(x)的最大值为2

其中所有正确结论的编号是()

A.①②④ B.②④ C.①④ D.①③

【分析】根据绝对值的应用,结合三角函数的图象和性质分别进行判断即可.

【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sinx|=f(x)则函数f(x)是偶函数,故①正确,

当x∈(,π)时,sin|x|=sinx,|sinx|=sinx,

则f(x)=sinx+sinx=2sinx为减函数,故②错误,

今天小编为大家整理了有关于高考全国卷理科数学试卷及答案,希望可以对大家有帮助。

全国统一高考数学试卷(理科)(新课标Ⅰ)

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()

A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}

2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()

A.(x+1)2+y2=1 B.(x﹣1)2+y2=1

C.x2+(y﹣1)2=1 D.x2+(y+1)2=1

3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()

A.a<b<c B.a<c<b C.c<a<b D.b<c<a

4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()

A.165cm B.175cm C.185cm D.190cm

5.(5分)函数f(x)=在[﹣π,π]的图象大致为()

A. B.

C. D.

6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()

A. B. C. D.

7.(5分)已知非零向量满足||=2||,且()⊥,则的夹角为()

A. B. C. D.

8.(5分)如图是求的程序框图,图中空白框中应填入()

A.A= B.A=2+ C.A= D.A=1+

9.(5分)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则()

A.an=2n﹣5 B.an=3n﹣10 C.Sn=2n2﹣8n D.Sn=n2﹣2n

10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()

A.+y2=1 B.+=1

C.+=1 D.+=1

11.(5分)关于函数f(x)=sin|x|+|sinx|有下述四个结论:

①f(x)是偶函数

②f(x)在区间(,π)单调递增

③f(x)在[﹣π,π]有4个零点

④f(x)的最大值为2

其中所有正确结论的编号是()

A.①②④ B.②④ C.①④ D.①③

12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()

A.8π B.4π C.2π D.π

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为 .

温馨提示! 你需要支付 ¥1.00 元后才能查看付费内容
点赞(0)
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部