今天小编为大家整理了有关于高考全国卷理科数学试卷及答案,希望可以对大家有帮助。
全国统一高考数学试卷(理科)(新课标Ⅰ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()
A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}
2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()
A.(x+1)2+y2=1 B.(x﹣1)2+y2=1
C.x2+(y﹣1)2=1 D.x2+(y+1)2=1
3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()
A.a<b<c B.a<c<b C.c<a<b D.b<c<a
4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(
≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()
A.165cm B.175cm C.185cm D.190cm
5.(5分)函数f(x)=在[﹣π,π]的图象大致为()
A. B.
C. D.
6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“
”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()
A. B.
C.
D.
7.(5分)已知非零向量,
满足|
|=2|
|,且(
﹣
)⊥
,则
与
的夹角为()
A. B.
C.
D.
8.(5分)如图是求的程序框图,图中空白框中应填入()
A.A= B.A=2+
C.A=
D.A=1+
9.(5分)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则()
A.an=2n﹣5 B.an=3n﹣10 C.Sn=2n2﹣8n D.Sn=n2﹣2n
10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()
A.+y2=1 B.
+
=1
C.+
=1 D.
+
=1
11.(5分)关于函数f(x)=sin|x|+|sinx|有下述四个结论:
①f(x)是偶函数
②f(x)在区间(,π)单调递增
③f(x)在[﹣π,π]有4个零点
④f(x)的最大值为2
其中所有正确结论的编号是()
A.①②④ B.②④ C.①④ D.①③
12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()
A.8π B.4
π C.2
π D.
π
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为 .
14.(5分)记Sn为等比数列{an}的前n项和.若a1=,a42=a6,则S5= .
15.(5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .
16.(5分)已知双曲线C:﹣
=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若
=
,
•
=0,则C的离心率为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c.设(sinB﹣sinC)2=sin2A﹣sinBsin C.
(1)求A;
(2)若a+b=2c,求sinC.
18.(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求二面角A﹣MA1﹣N的正弦值.
19.(12分)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若=3
,求|AB|.
20.(12分)已知函数f(x)=sinx﹣ln(1+x),f′(x)为f(x)的导数.证明:
(1)f′(x)在区间(﹣1,)存在唯一极大值点;
(2)f(x)有且仅有2个零点.
21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求X的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api﹣1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.
(i)证明:{pi+1﹣pi}(i=0,1,2,…,7)为等比数列;
(ii)求p4,并根据p4的值解释这种试验方案的合理性.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分)
22.(10分)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+
ρsinθ+11=0.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
[选修4-5:不等式选讲](10分)
23.已知a,b,c为正数,且满足abc=1.证明:
(1)+
+
≤a2+b2+c2;
(2)(a+b)3+(b+c)3+(c+a)3≥24.
高考全国卷理科数学试卷及答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()
A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}
【分析】利用一元二次不等式的解法和交集的运算即可得出.
【解答】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},
∴M∩N={x|﹣2<x<2}.
故选:C.
【点评】本题考查了一元二次不等式的解法和交集的运算,属基础题.
2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()
A.(x+1)2+y2=1 B.(x﹣1)2+y2=1
C.x2+(y﹣1)2=1 D.x2+(y+1)2=1
【分析】由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z﹣i|=1即可得解.
【解答】解:∵z在复平面内对应的点为(x,y),
∴z=x+yi,
∴z﹣i=x+(y﹣1)i,
∴|z﹣i|=,
∴x2+(y﹣1)2=1,
故选:C.
【点评】本题考查复数的模、复数的几何意义,正确理解复数的几何意义是解题关键,属基础题.
3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()
A.a<b<c B.a<c<b C.c<a<b D.b<c<a
【分析】由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.
【解答】解:a=log20.2<log21=0,
b=20.2>20=1,
∵0<0.20.3<0.20=1,
∴c=0.20.3∈(0,1),
∴a<c<b,
故选:B.
【点评】本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题.
4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(
≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()
A.165cm B.175cm C.185cm D.190cm
【分析】充分运用黄金分割比例,结合图形,计算可估计身高.
【解答】解:头顶至脖子下端的长度为26cm,
说明头顶到咽喉的长度小于26cm,
由头顶至咽喉的长度与咽喉至肚脐的长度之比是≈0.618,
可得咽喉至肚脐的长度小于≈42cm,
由头顶至肚脐的长度与肚脐至足底的长度之比是,
可得肚脐至足底的长度小于=110,
即有该人的身高小于110+68=178cm,
又肚脐至足底的长度大于105cm,
可得头顶至肚脐的长度大于105×0.618≈65cm,
即该人的身高大于65+105=170cm,
故选:B.
【点评】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.
5.(5分)函数f(x)=在[﹣π,π]的图象大致为()
A. B.
C. D.
【分析】由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.
【解答】解:∵f(x)=,x∈[﹣π,π],
∴f(﹣x)==﹣
=﹣f(x),
∴f(x)为[﹣π,π]上的奇函数,因此排除A;
又f()=
,因此排除B,C;
故选:D.
【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.
6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“
”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()
A. B.
C.
D.
【分析】基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.
【解答】解:在所有重卦中随机取一重卦,
基本事件总数n=26=64,
该重卦恰有3个阳爻包含的基本个数m==20,
则该重卦恰有3个阳爻的概率p==
=
.
故选:A.
【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.
7.(5分)已知非零向量,
满足|
|=2|
|,且(
﹣
)⊥
,则
与
的夹角为()
A. B.
C.
D.
【分析】由(﹣
)⊥
,可得
,进一步得到
,然后求出夹角即可.
【解答】解:∵(﹣
)⊥
,
∴
=,
∴
==
,
∵,
∴.
故选:B.
【点评】本题考查了平面向量的数量积和向量的夹角,属基础题.
8.(5分)如图是求的程序框图,图中空白框中应填入()
A.A= B.A=2+
C.A=
D.A=1+
【分析】模拟程序的运行,由题意,依次写出每次得到的A的值,观察规律即可得解.
【解答】解:模拟程序的运行,可得:
A=,k=1;
满足条件k≤2,执行循环体,A=,k=2;
满足条件k≤2,执行循环体,A=,k=3;
此时,不满足条件k≤2,退出循环,输出A的值为,
观察A的取值规律可知图中空白框中应填入A=.
故选:A.
【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.
9.(5分)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则()
A.an=2n﹣5 B.an=3n﹣10 C.Sn=2n2﹣8n D.Sn=n2﹣2n
【分析】根据题意,设等差数列{an}的公差为d,则有,求出首项和公差,然后求出通项公式和前n项和即可.
【解答】解:设等差数列{an}的公差为d,
由S4=0,a5=5,得
,∴
,
∴an=2n﹣5,,
故选:A.
【点评】本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题.
10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()
A.+y2=1 B.
+
=1
C.+
=1 D.
+
=1
【分析】根据椭圆的定义以及余弦定理列方程可解得a=,b=
,可得椭圆的方程.
【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,
又|AB|=|BF1|,∴|BF1|=3|BF2|,
又|BF1|+|BF2|=2a,∴|BF2|=,
∴|AF2|=a,|BF1|=a,
∵|AF1|+|AF2|=2a,∴|AF1|=a,
∴|AF1|=|AF2|,∴A在y轴上.
在Rt△AF2O中,cos∠AF2O=,
在△BF1F2中,由余弦定理可得cos∠BF2F1=,
根据cos∠AF2O+cos∠BF2F1=0,可得+
=0,解得a2=3,∴a=
.
b2=a2﹣c2=3﹣1=2.
所以椭圆C的方程为:+
=1.
故选:B.
【点评】本题考查了椭圆的性质,属中档题.
11.(5分)关于函数f(x)=sin|x|+|sinx|有下述四个结论:
①f(x)是偶函数
②f(x)在区间(,π)单调递增
③f(x)在[﹣π,π]有4个零点
④f(x)的最大值为2
其中所有正确结论的编号是()
A.①②④ B.②④ C.①④ D.①③
【分析】根据绝对值的应用,结合三角函数的图象和性质分别进行判断即可.
【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sinx|=f(x)则函数f(x)是偶函数,故①正确,
当x∈(,π)时,sin|x|=sinx,|sinx|=sinx,
则f(x)=sinx+sinx=2sinx为减函数,故②错误,
今天小编为大家整理了有关于高考全国卷理科数学试卷及答案,希望可以对大家有帮助。
全国统一高考数学试卷(理科)(新课标Ⅰ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()
A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}
2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()
A.(x+1)2+y2=1 B.(x﹣1)2+y2=1
C.x2+(y﹣1)2=1 D.x2+(y+1)2=1
3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()
A.a<b<c B.a<c<b C.c<a<b D.b<c<a
4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(
≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()
A.165cm B.175cm C.185cm D.190cm
5.(5分)函数f(x)=在[﹣π,π]的图象大致为()
A. B.
C. D.
6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“
”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()
A. B.
C.
D.
7.(5分)已知非零向量,
满足|
|=2|
|,且(
﹣
)⊥
,则
与
的夹角为()
A. B.
C.
D.
8.(5分)如图是求的程序框图,图中空白框中应填入()
A.A= B.A=2+
C.A=
D.A=1+
9.(5分)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则()
A.an=2n﹣5 B.an=3n﹣10 C.Sn=2n2﹣8n D.Sn=n2﹣2n
10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()
A.+y2=1 B.
+
=1
C.+
=1 D.
+
=1
11.(5分)关于函数f(x)=sin|x|+|sinx|有下述四个结论:
①f(x)是偶函数
②f(x)在区间(,π)单调递增
③f(x)在[﹣π,π]有4个零点
④f(x)的最大值为2
其中所有正确结论的编号是()
A.①②④ B.②④ C.①④ D.①③
12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()
A.8π B.4
π C.2
π D.
π
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为 .