下面是小编精心整理的小升初奥数知识点归纳整理总结,欢迎阅读与收藏,供大家参考。
小升初奥数知识点归纳整理总结
一、质数、倍数、倍数、约数、整除问题
1、质数(素数)
①只有1和它本身两个约数的整数称为质数;
②100以内质数共25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97;
③最小的偶合数是4,最小的奇合数是9;
④0、1既不是质数也不是合数。
⑤每一个合数分解质因数形式是唯一的。
⑥公因数只有1的两个非零自然数,叫做互质数。
2、倍数、约数性质
①一个数最小的倍数是这个数本身,没有最大的倍数;
②“0”没有约数和倍数,一般认为“1”只有约数“1”;
③假如几个数都是某一个数的倍数,那么这几个数的组合也是某个数的倍数。
例如:26、39是13的倍数,则2639也是13的倍数。
④一般的数字的约数的个数都是偶数个,但是平方数的约数个数是奇数个。
例如:“9”有3个约数(1、3、9),“16”有5个约数(1、二、4、8、16)。
⑤约数和倍数必须强调出是哪个数字的约数和倍数。
⑥一个数既是它本身的倍数又是它本身的约数。
⑦一个数如果有偶约数,则这个数必为偶数。
3、整除性质
①能被“2”整除的数的特点:末尾数字是“0、2、4、6、8”;
②能被“3(9)”整除的数的特点:各位上数字和能被“3(9)”整除;
③能被“4(25)”整除的数的特点:末尾两位能被“4(25)”整除;
④能被“5”整除的数的特点:末尾数字是“0或5”;
⑤能被“8(125)”整除的数的特点:这个数末三位能被“8(125)”整除;
⑥能被“7、11、13”整除的数的特点:这个数从右向左每三位分成一节,用奇数节的和减去偶数节的和,所得到的差能被“7、11、13”整除。如果求余数时,则奇数节和小于偶数节和时,需要将奇数节和加上若干个“7、11、13”,再相减。
⑦能被“11”整除的数的另一个特点:这个数奇数位数字和与偶数位数字和的差能被11整除。例如:“122518”分析:奇数位数字和1+2+1=4,偶数位数字和2+5+8=15,差为11,说明这个数可以被11整除。如果求余数时,则奇数位数字和小于偶数位数字和时,需要将奇数位和加上若干个“11”,再相减。
二、公约数、公倍数
1、最大公约数:公有质因数的乘积。通常用“()”表示。
2、最小公倍数:公有质因数和独有公因数的连乘积。用“[]”表示。
3、两个自然数的最小公约数和最大公倍数的乘积=两个自然数的乘积
4、如果两个自然数是互质数,那么它们的最大公约数是1,最小公倍数是这两个数的乘积。例如8和9,它们是互质数,所以(8,9)=1,[8,9]=72。
5、如果两个自然数中,较大数是较小数的倍数,那么较小数就是这两个数的最大公约数,较大数就是这两个数的最小公倍数。例如18与3,18÷3=6,所以(18,3)=3,[18,3]=18。
6、两个整数分别除以它们的最大公约数,所得的商是互质数。例如8和14分别除以它们的最大公约数2,所得的商分别为4和7,那么4和7是互质数。
▲7、根据互质数的意义,相邻的自然数是互质数,互质数的最大公因数是1,最小公倍数是它们的乘积。
8、解题思路和方法
(1)求公约数和公倍数一般采用短除法。
(2)对于比较大的两个数求最大公约数(最大公约数一般大于11),也可以采用辗转相除法。辗转相除法步骤:用大数(被除数)除以小数(除数)得到余数,所求最大公约数就是除数与余数的最大公约数,再次相除,依次类推,直到余数为0,最后一个除数既是所求的最大公约数。注意:用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。
例:求319、377的最大公约数,即求(319,377)。
九、追及问题
数量关系:
①追及时间=追及路程÷(快速-慢速)
②追及路程=(快速-乙速)×追及时间
十、列车问题
1、火车过桥:过桥时间=(车长+桥长)÷车速
2、火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)
3、火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)
十一、行船问题
1、定义:行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度;船只顺水航行的速度(顺水速度)是船速和水速之和;船只逆水航行的速度(逆水速度)是船速和水速之差。
2、数量关系:
①船速=(顺水速度+逆水速度)÷2
②水速=(顺水速度-逆水速度)÷2
十二、盈亏问题
1、定义:根据一定的人数,分配一定的物品,在两次分配中,依次有余(盈),依次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。
2、数量关系:
①两次分配中,如果一次盈一次亏,则有:
参加分配总人数=(盈+亏)÷分配差
②两次分配都是盈或都是亏,则有:
参加分配总人数=(大盈-小盈)÷分配差
参加分配总人数=(大亏-小亏)÷分配差
十三、工程问题
1、定义:工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一件工作”等,在解题时候,常常用单位“1”表示工作总量。
2、数量关系:解答工程问题的关键是把工作总量看作“1”,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间关系列出算式。
①工作量=工作效率×工作时间
②工作时间=工作量÷工作效率
③工作时间=总工作量÷(甲工作效率+乙工作效率)
十四、正反比例问题
1、正比例关系:两种相关联的量,一种量变化,另一种辆也随着变化,如果这两种量中向对应的两个数的比值,即商一定,那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2、反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
十五、按比例分配问题
比的前后项相加求出总份数,各部分占总份数的几分之几,再用总量乘以几分之几即得各部分量的值。
十六、百分比问题
1、定义:百分数又叫百分率。是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需约分。分数的分子、分母必须是自然数,百分数的分子可以是小数;百分数有一个专门的记号“%”
2、数量关系:
①百分数=比较量÷标准量
②标准量=比较量÷百分数
十七、商品利润问题
1、定义:在生产经营中,销售价格高于进货价的叫盈利,低于进货价的叫亏本,主要包括成本、利润、利润率和亏损、亏损率等方面的问题。
2、数量关系:
下面是小编精心整理的小升初奥数知识点归纳整理总结,欢迎阅读与收藏,供大家参考。
小升初奥数知识点归纳整理总结
一、质数、倍数、倍数、约数、整除问题
1、质数(素数)
①只有1和它本身两个约数的整数称为质数;
②100以内质数共25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97;
③最小的偶合数是4,最小的奇合数是9;
④0、1既不是质数也不是合数。
⑤每一个合数分解质因数形式是唯一的。
⑥公因数只有1的两个非零自然数,叫做互质数。
2、倍数、约数性质
①一个数最小的倍数是这个数本身,没有最大的倍数;
②“0”没有约数和倍数,一般认为“1”只有约数“1”;
③假如几个数都是某一个数的倍数,那么这几个数的组合也是某个数的倍数。
例如:26、39是13的倍数,则2639也是13的倍数。
④一般的数字的约数的个数都是偶数个,但是平方数的约数个数是奇数个。
例如:“9”有3个约数(1、3、9),“16”有5个约数(1、二、4、8、16)。
⑤约数和倍数必须强调出是哪个数字的约数和倍数。
⑥一个数既是它本身的倍数又是它本身的约数。
⑦一个数如果有偶约数,则这个数必为偶数。
3、整除性质
①能被“2”整除的数的特点:末尾数字是“0、2、4、6、8”;
②能被“3(9)”整除的数的特点:各位上数字和能被“3(9)”整除;
③能被“4(25)”整除的数的特点:末尾两位能被“4(25)”整除;
④能被“5”整除的数的特点:末尾数字是“0或5”;
⑤能被“8(125)”整除的数的特点:这个数末三位能被“8(125)”整除;
⑥能被“7、11、13”整除的数的特点:这个数从右向左每三位分成一节,用奇数节的和减去偶数节的和,所得到的差能被“7、11、13”整除。如果求余数时,则奇数节和小于偶数节和时,需要将奇数节和加上若干个“7、11、13”,再相减。
⑦能被“11”整除的数的另一个特点:这个数奇数位数字和与偶数位数字和的差能被11整除。例如:“122518”分析:奇数位数字和1+2+1=4,偶数位数字和2+5+8=15,差为11,说明这个数可以被11整除。如果求余数时,则奇数位数字和小于偶数位数字和时,需要将奇数位和加上若干个“11”,再相减。
二、公约数、公倍数
1、最大公约数:公有质因数的乘积。通常用“()”表示。
2、最小公倍数:公有质因数和独有公因数的连乘积。用“[]”表示。
3、两个自然数的最小公约数和最大公倍数的乘积=两个自然数的乘积
4、如果两个自然数是互质数,那么它们的最大公约数是1,最小公倍数是这两个数的乘积。例如8和9,它们是互质数,所以(8,9)=1,[8,9]=72。
5、如果两个自然数中,较大数是较小数的倍数,那么较小数就是这两个数的最大公约数,较大数就是这两个数的最小公倍数。例如18与3,18÷3=6,所以(18,3)=3,[18,3]=18。
6、两个整数分别除以它们的最大公约数,所得的商是互质数。例如8和14分别除以它们的最大公约数2,所得的商分别为4和7,那么4和7是互质数。
▲7、根据互质数的意义,相邻的自然数是互质数,互质数的最大公因数是1,最小公倍数是它们的乘积。
8、解题思路和方法
(1)求公约数和公倍数一般采用短除法。
(2)对于比较大的两个数求最大公约数(最大公约数一般大于11),也可以采用辗转相除法。辗转相除法步骤:用大数(被除数)除以小数(除数)得到余数,所求最大公约数就是除数与余数的最大公约数,再次相除,依次类推,直到余数为0,最后一个除数既是所求的最大公约数。注意:用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。
例:求319、377的最大公约数,即求(319,377)。