下面是小编为大家整理的小学数学知识点总结,希望可以帮助到大家!

(一)数与计算

(1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题

(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。

(二)量与计量

钟面的认识(整时)。人民币的认识和简单计算。

(三)几何初步知识

长方体、正方体、圆柱和球的直观认识。

长方形、正方形、三角形和圆的直观认识。

(四)应用题

比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)

(五)实践活动

选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

一、圆的特征

1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

有四条对称轴的图形:正方形

有无条对称轴的图形:圆,圆环

6、画圆

(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:

围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π=周长÷直径≈3.14

所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径=πr+d

三、圆的面积s

1、商变化:

(1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。

(2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。

2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。

(四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13

1、上、下

(1)在具体场景中理解上、下的含义及其相对性。

(2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。

(3)培养学生初步的空间观念。

2、前、后

(1)在具体场景中理解前、后、最×的含义,以及前后的相对性。

(2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的相对位置。

(3)培养学生初步的空间观念。

加减法

(一)本单元知识网络:

(二)各课知识点:

有几枝铅笔(加法的认识)

知识点:

1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

2、初步尝试选择恰当的方法进行5以内的加法口算。

3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。

有几辆车(初步认识加法的交换律)

3、左、右(1)在具体场景中理解左、右的含义及其相对性。

(2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。

(3)培养学生初步的空间观念。

4、位置

(1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。

(2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。

(3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。

通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。

小小运动会

1、应用100以内的进位加法与退位减法的计算方法进行正确的计算。

2、经历与他人交流各自算法的过程,体会算法多样化。

3、体会长方形、正方形、三角形和圆在生活中的普遍存在。

4、能利用图形设计美丽的图案。

时分秒

1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

1米=100厘米,1分米=100毫米,

100厘米=1米,100毫米=1分米

③进率是1000:

1千米=1000米,1公里==1000米,

1000米=1千米,1000米=1公里

6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的.末尾加上3个0;

把千克换算成吨,是在数字的末尾去掉3个0。

7、相邻两个质量单位进率是1000。

1吨=1000千克1千克=1000克

1000千克=1吨1000克=1千克

倍的认识

1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

多位数乘一位数

1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)

2、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。

3、因数末尾有几个0,就在积的末尾添上几个0。

4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

公式:速度×时间=路程

每节车厢的人数×车厢的数量=全车的人数

5、(关于“大约)应用题:

①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)

②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)

③条件和问题中都有“大约”,求近似数,用估算。→(≈)

四边形

1、有4条直的边和4个角封闭图形我们叫它四边形。

2、四边形的特点:有四条直的边,有四个角。

3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

4、正方形的特点:有4个直角,4条边相等。

5、长方形和正方形是特殊的平行四边形。

6、平行四边形的特点:

①对边相等、对角相等。

②平行四边形容易变形。(三角形不容易变形)

7、封闭图形一周的长度,就是它的周长。

8、公式。

正方形的周长=边长×4

正方形的边长=周长÷4,

长方形的周长=(长+宽)×2

长方形的长=周长÷2-宽,

3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4、分数乘整数:数形结合、转化化归

5、倒数:乘积是1的两个数叫做互为倒数。

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数混合运算

1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)分数乘法应用题——用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

3、求比一个数多(或少)几分之几的数是多少的解题方法

(1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;

(2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。

小学数学知识点全总结之一:运算定律

加法交换律a+b=b+a

结合律(a+b)+c=a+(b+c)

减法性质a-b-c=a-(b+c)

a-(b-c)=a-b+c

乘法交换律a×b=b×a

温馨提示! 你需要支付 ¥1.00 元后才能查看付费内容
点赞(0)
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部