今天小编为大家整理了有关于江苏省高考数学试卷,希望可以对大家有帮助。

江苏省高考数学试卷

一、填空题(本大题共14小题,每小题5分,共计70分)

1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.

2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.

3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.

4.(5分)根据如图所示的伪代码,可知输出的结果S为.

5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.

6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.

7.(5分)不等式2<4的解集为.

8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.

9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.

10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.

11.(5分)设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为.

12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.

13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.

14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak•ak+1)的值为.

二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)

15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.

(1)求BC的长;

(2)求sin2C的值.

16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.

求证:

(1)DE∥平面AA1C1C;

(2)BC1⊥AB1.

17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.

(1)求a,b的值;

(2)设公路l与曲线C相切于P点,P的横坐标为t.

①请写出公路l长度的函数解析式f(t),并写出其定义域;

②当t为何值时,公路l的长度最短?求出最短长度.

18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.

(1)求椭圆的标准方程;

(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.

19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).

(1)试讨论f(x)的单调性;

(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.

20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.

(1)证明:依次构成等比数列;

(2)是否存在,使得依次构成等比数列?并说明理由;

(3)是否存在及正整数,使得依次构成等比数列?并说明理由。

三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】

21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.

求证:△ABD∽△AEB.

【选修4-2:矩阵与变换】

22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.

【选修4-4:坐标系与参数方程】

23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.

[选修4-5:不等式选讲】

24.解不等式x+|2x+3|≥2.

【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤

25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.

(1)求平面PAB与平面PCD所成二面角的余弦值;

(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.

26.(10分)已知集合X={1,2,3},Yn={1,2,3,…,n)(n∈N*),设Sn={(a,b)|a整除b或整除a,a∈X,B∈Yn},令f(n)表示集合Sn所含元素的个数.

(1)写出f(6)的值;

(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.

江苏省高考数学试卷参考答案

一、填空题(本大题共14小题,每小题5分,共计70分)

1.(5分)

考点:并集及其运算.菁优网版权所有

专题:集合.

分析:求出A∪B,再明确元素个数

解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5

点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题

2.(5分)

考点:众数、中位数、平均数.菁优网版权所有

专题:概率与统计.

分析:直接求解数据的平均数即可.

解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.

点评:本题考查数据的均值的求法,基本知识的考查.

3.(5分)

考点:复数求模.菁优网版权所有

专题:数系的扩充和复数.

分析:直接利用复数的模的求解法则,化简求解即可.

解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:

点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.

4.(5分)

考点:伪代码.菁优网版权所有

专题:图表型;算法和程序框图.

分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.

解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.

点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.

5.(5分)

考点:古典概型及其概率计算公式.菁优网版权所有

专题:概率与统计.

分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.

解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:

点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.

6.(5分)

考点:平面向量的基本定理及其意义.菁优网版权所有

专题:平面向量及应用.

分析:直接利用向量的坐标运算,求解即可.

解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.

点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.

7.(5分)

考点:指、对数不等式的解法.菁优网版权所有

专题:函数的性质及应用;不等式的解法及应用.

分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.

解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)

点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.

8.(5分)

考点:两角和与差的正切函数.菁优网版权所有

专题:三角函数的求值.

分析:直接利用两角和的正切函数,求解即可.

解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.

点评:本题考查两角和的正切函数,基本知识的考查.

9.(5分)

考点:棱柱、棱锥、棱台的体积.菁优网版权所有

专题:计算题;空间位置关系与距离.

分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.

解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:

点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.

10.(5分)

考点:圆的标准方程;圆的切线方程.菁优网版权所有

今天小编为大家整理了有关于江苏省高考数学试卷,希望可以对大家有帮助。

江苏省高考数学试卷

一、填空题(本大题共14小题,每小题5分,共计70分)

1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.

2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.

3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.

4.(5分)根据如图所示的伪代码,可知输出的结果S为.

5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.

6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.

7.(5分)不等式2<4的解集为.

8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.

9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.

10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.

11.(5分)设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为.

12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.

13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.

14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak•ak+1)的值为.

二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)

15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.

(1)求BC的长;

(2)求sin2C的值.

16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.

求证:

(1)DE∥平面AA1C1C;

(2)BC1⊥AB1.

17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.

(1)求a,b的值;

(2)设公路l与曲线C相切于P点,P的横坐标为t.

①请写出公路l长度的函数解析式f(t),并写出其定义域;

②当t为何值时,公路l的长度最短?求出最短长度.

18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.

(1)求椭圆的标准方程;

(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.

19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).

(1)试讨论f(x)的单调性;

(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.

温馨提示! 你需要支付 ¥1.00 元后才能查看付费内容
点赞(0)
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部